» Articles » PMID: 20380759

Sensitivity of Genomic Selection to Using Different Prior Distributions

Overview
Journal BMC Proc
Publisher Biomed Central
Specialty Biology
Date 2010 Apr 13
PMID 20380759
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: Genomic selection describes a selection strategy based on genomic estimated breeding values (GEBV) predicted from dense genetic markers such as single nucleotide polymorphism (SNP) data. Different Bayesian models have been suggested to derive the prediction equation, with the main difference centred around the specification of the prior distributions.

Methods: The simulated dataset of the 13(th) QTL-MAS workshop was analysed using four Bayesian approaches to predict GEBV for animals without phenotypic information. Different prior distributions were assumed to assess their affect on the accuracy of the predicted GEBV.

Conclusion: All methods produced GEBV that were highly correlated with the true breeding values. The models appear relatively insensitive to the choice of prior distributions for QTL-MAS data set and this is consistent with uniformity of performance of different methods found in real data.

Citing Articles

Accuracy of genomic prediction of maternal traits in pigs using Bayesian variable selection methods.

Kjetsa M, Gjuvsland A, Nordbo O, Grindflek E, Meuwissen T J Anim Breed Genet. 2022; 139(6):654-665.

PMID: 35758628 PMC: 9796620. DOI: 10.1111/jbg.12729.


FMixFN: A Fast Big Data-Oriented Genomic Selection Model Based on an Iterative Conditional Expectation algorithm.

Xu W, Liu X, Liao M, Xiao S, Zheng M, Yao T Front Genet. 2021; 12:721600.

PMID: 34868200 PMC: 8637923. DOI: 10.3389/fgene.2021.721600.


Genetic prediction of complex traits with polygenic scores: a statistical review.

Ma Y, Zhou X Trends Genet. 2021; 37(11):995-1011.

PMID: 34243982 PMC: 8511058. DOI: 10.1016/j.tig.2021.06.004.


Statistical methods for SNP heritability estimation and partition: A review.

Zhu H, Zhou X Comput Struct Biotechnol J. 2020; 18:1557-1568.

PMID: 32637052 PMC: 7330487. DOI: 10.1016/j.csbj.2020.06.011.


Key Genetic Parameters for Population Management.

Wellmann R, Bennewitz J Front Genet. 2019; 10:667.

PMID: 31475027 PMC: 6707806. DOI: 10.3389/fgene.2019.00667.


References
1.
Verbyla K, Hayes B, Bowman P, Goddard M . Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genet Res (Camb). 2009; 91(5):307-11. DOI: 10.1017/S0016672309990243. View

2.
Hayes B, Bowman P, Chamberlain A, Goddard M . Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009; 92(2):433-43. DOI: 10.3168/jds.2008-1646. View

3.
Meuwissen T, Hayes B, Goddard M . Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001; 157(4):1819-29. PMC: 1461589. DOI: 10.1093/genetics/157.4.1819. View

4.
Meuwissen T, Goddard M . Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet Sel Evol. 2004; 36(3):261-79. PMC: 2697201. DOI: 10.1186/1297-9686-36-3-261. View

5.
Yi N . A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics. 2004; 167(2):967-75. PMC: 1470906. DOI: 10.1534/genetics.104.026286. View