» Articles » PMID: 20379351

Estimating Myocardial Motion by 4D Image Warping

Overview
Publisher Elsevier
Date 2010 Apr 10
PMID 20379351
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

A method for spatio-temporally smooth and consistent estimation of cardiac motion from MR cine sequences is proposed. Myocardial motion is estimated within a 4-dimensional (4D) registration framework, in which all 3D images obtained at different cardiac phases are simultaneously registered. This facilitates spatio-temporally consistent estimation of motion as opposed to other registration-based algorithms which estimate the motion by sequentially registering one frame to another. To facilitate image matching, an attribute vector (AV) is constructed for each point in the image, and is intended to serve as a "morphological signature" of that point. The AV includes intensity, boundary, and geometric moment invariants (GMIs). Hierarchical registration of two image sequences is achieved by using the most distinctive points for initial registration of two sequences and gradually adding less-distinctive points to refine the registration. Experimental results on real data demonstrate good performance of the proposed method for cardiac image registration and motion estimation. The motion estimation is validated via comparisons with motion estimates obtained from MR images with myocardial tagging.

Citing Articles

Cardiac motion estimation from medical images: a regularisation framework applied on pairwise image registration displacement fields.

Wiputra H, Chan W, Foo Y, Ho S, Yap C Sci Rep. 2020; 10(1):18510.

PMID: 33116206 PMC: 7595231. DOI: 10.1038/s41598-020-75525-4.


Patch-Based Label Fusion with Structured Discriminant Embedding for Hippocampus Segmentation.

Wang Y, Ma G, Wu X, Zhou J Neuroinformatics. 2018; 16(3-4):411-423.

PMID: 29512026 DOI: 10.1007/s12021-018-9364-2.


Frequency-Selective Computed Tomography: Applications During Periodic Thoracic Motion.

Herrmann J, Hoffman E, Kaczka D IEEE Trans Med Imaging. 2017; 36(8):1722-1732.

PMID: 28436852 PMC: 5639881. DOI: 10.1109/TMI.2017.2694887.


Computing group cardinality constraint solutions for logistic regression problems.

Zhang Y, Kwon D, Pohl K Med Image Anal. 2016; 35:58-69.

PMID: 27318592 PMC: 5099121. DOI: 10.1016/j.media.2016.05.011.


Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.

Bevilacqua M, Dharmakumar R, Tsaftaris S IEEE Trans Med Imaging. 2015; 35(1):282-93.

PMID: 26292338 PMC: 4883113. DOI: 10.1109/TMI.2015.2470075.


References
1.
Song S, Leahy R . Computation of 3-D velocity fields from 3-D cine CT images of a human heart. IEEE Trans Med Imaging. 1991; 10(3):295-306. DOI: 10.1109/42.97579. View

2.
Wang Y, Chen Y, Amini A . Fast LV motion estimation using subspace approximation techniques. IEEE Trans Med Imaging. 2001; 20(6):499-513. DOI: 10.1109/42.929616. View

3.
Papademetris X, Sinusas A, Dione D, Duncan J . Estimation of 3D left ventricular deformation from echocardiography. Med Image Anal. 2001; 5(1):17-28. DOI: 10.1016/s1361-8415(00)00022-0. View

4.
Arts T, HUNTER W, Douglas A, Muijtjens A, Reneman R . Description of the deformation of the left ventricle by a kinematic model. J Biomech. 1992; 25(10):1119-27. DOI: 10.1016/0021-9290(92)90068-c. View

5.
Christensen G, Johnson H . Consistent image registration. IEEE Trans Med Imaging. 2001; 20(7):568-82. DOI: 10.1109/42.932742. View