» Articles » PMID: 20372990

Intranasal Delivery--modification of Drug Metabolism and Brain Disposition

Overview
Journal Pharm Res
Specialties Pharmacology
Pharmacy
Date 2010 Apr 8
PMID 20372990
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Intranasal route continues to be one of the main focuses of drug delivery research. Although it is generally perceived that the nasal route could avoid the first-pass metabolism in liver and gastrointestinal tract, the role of metabolic conversions in systemic and brain-targeted deliveries of the parent compounds and their metabolites should not be underestimated. In this commentary, metabolite formations after intranasal and other routes of administration are compared. Also, the disposition of metabolites in plasma and brain after nasal administrations of parent drugs, prodrugs and preformed metabolites will be discussed. The importance and implications of metabolism for future nasal drug development are highlighted.

Citing Articles

Pharmacokinetic Study of Fingolimod Nasal Films Administered via Nose-to-Brain Route in C57BL/6 J Mice as Potential Treatment for Multiple Sclerosis.

Papakyriakopoulou P, Balafas E, Kostomitsopoulos N, Rekkas D, Dev K, Valsami G Pharm Res. 2024; 41(10):1951-1963.

PMID: 39470941 DOI: 10.1007/s11095-024-03745-8.


Enhanced Delivery of Neuroactive Drugs via Nasal Delivery with a Self-Healing Supramolecular Gel.

Wang J, Rodrigo A, Patterson A, Hawkins K, Aly M, Sun J Adv Sci (Weinh). 2021; 8(14):e2101058.

PMID: 34029010 PMC: 8292877. DOI: 10.1002/advs.202101058.


Non-Invasive Strategies for Nose-to-Brain Drug Delivery.

Trevino J, Quispe R, Khan F, Novak V J Clin Trials. 2021; 10(7).

PMID: 33505777 PMC: 7836101.


Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology.

Agarwal M, Alam M, Haider M, Malik M, Kim D Nanomaterials (Basel). 2021; 11(1).

PMID: 33383712 PMC: 7823376. DOI: 10.3390/nano11010059.


Pharmacokinetics, absolute bioavailability and tolerability of ketamine after intranasal administration to dexmedetomidine sedated dogs.

Vlerick L, Devreese M, Peremans K, Dockx R, Croubels S, Duchateau L PLoS One. 2020; 15(1):e0227762.

PMID: 31929589 PMC: 6957157. DOI: 10.1371/journal.pone.0227762.


References
1.
Illum L . Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000; 11(1):1-18. DOI: 10.1016/s0928-0987(00)00087-7. View

2.
Prueksaritanont T, Lin J, Baillie T . Complicating factors in safety testing of drug metabolites: kinetic differences between generated and preformed metabolites. Toxicol Appl Pharmacol. 2006; 217(2):143-52. DOI: 10.1016/j.taap.2006.08.009. View

3.
Dhuria S, Hanson L, Frey 2nd W . Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2009; 99(4):1654-73. DOI: 10.1002/jps.21924. View

4.
Faraj J, Hussain A, Aramaki Y, Iseki K, Kagoshima M, DITTERT L . Mechanism of nasal absorption of drugs. III: Nasal absorption of leucine enkephalin. J Pharm Sci. 1990; 79(8):698-702. DOI: 10.1002/jps.2600790810. View

5.
Lesko L, Atkinson Jr A . Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001; 41:347-66. DOI: 10.1146/annurev.pharmtox.41.1.347. View