Transcriptome Analysis and Molecular Signature of Human Retinal Pigment Epithelium
Overview
Molecular Biology
Authors
Affiliations
Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed 'signature' genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases.
Shaw E, Anderson D, Periasamy R, Schey K, Curcio C, Lipinski D Invest Ophthalmol Vis Sci. 2025; 66(3):18.
PMID: 40048184 PMC: 11895847. DOI: 10.1167/iovs.66.3.18.
Cigarette smoke and biological age induce degenerative heterogeneity in retinal pigment epithelium.
Singh K, Jin Y, Hu M, Palazzo I, Cano M, Hoang T bioRxiv. 2025; .
PMID: 39974955 PMC: 11838378. DOI: 10.1101/2025.01.27.635096.
Ocular Tissue-Specific Amino Acid Metabolism in Gyrate Atrophy.
Puja A, Lu J, Du J Adv Exp Med Biol. 2025; 1468:279-284.
PMID: 39930209 DOI: 10.1007/978-3-031-76550-6_46.
Structure and function of the SIT1 proline transporter in complex with the COVID-19 receptor ACE2.
Li H, Pike A, Lotsaris I, Chi G, Hansen J, Lee S Nat Commun. 2024; 15(1):5503.
PMID: 38951531 PMC: 11217458. DOI: 10.1038/s41467-024-48921-x.
Pathak A, Willis K, Bankaitis V, McDermott M Biochim Biophys Acta Mol Cell Biol Lipids. 2024; 1869(7):159529.
PMID: 38945251 PMC: 11533902. DOI: 10.1016/j.bbalip.2024.159529.