» Articles » PMID: 20357109

The Range of Intrinsic Frequencies Represented by Medial Entorhinal Cortex Stellate Cells Extends with Age

Overview
Journal J Neurosci
Specialty Neurology
Date 2010 Apr 2
PMID 20357109
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

In both humans and rodents, the external environment is encoded in the form of cognitive maps. Neurons in the medial entorhinal cortex (mEC) represent spatial locations in a sequence of grid-like patterns scaled along the dorsal-ventral axis. The grid spacing correlates with the intrinsic resonance frequencies of stellate cells in layer II of mEC. We investigated the development of frequency preferences in these cells from weaning to adulthood using patch-clamp and sharp microelectrode recordings. We found that the dorsal-ventral gradient of stellate cell properties and frequency preferences exists before animals are able to actively explore their environment. In the transition to adulthood, cells respond faster and become less excitable, and the range of intrinsic resonance frequencies in the population expands in the dorsal direction. This is likely to reflect both the growth of the brain and the expansion of the internal representation caused by new exploratory experience.

Citing Articles

Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus.

Alexander A, Robinson J, Stern C, Hasselmo M Hippocampus. 2023; 33(5):465-487.

PMID: 36861201 PMC: 10403145. DOI: 10.1002/hipo.23513.


Fan cells in lateral entorhinal cortex directly influence medial entorhinal cortex through synaptic connections in layer 1.

Vandrey B, Armstrong J, Brown C, Garden D, Nolan M Elife. 2022; 11.

PMID: 36562467 PMC: 9822265. DOI: 10.7554/eLife.83008.


The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability.

Pena R, Rotstein H Biol Cybern. 2022; 116(2):163-190.

PMID: 35038010 DOI: 10.1007/s00422-021-00919-0.


Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex.

Pastoll H, Garden D, Papastathopoulos I, Surmeli G, Nolan M Elife. 2020; 9.

PMID: 32039761 PMC: 7067584. DOI: 10.7554/eLife.52258.


Postnatal Development of Functional Projections from Parasubiculum and Presubiculum to Medial Entorhinal Cortex in the Rat.

Canto C, Koganezawa N, Lagartos-Donate M, OReilly K, Mansvelder H, Witter M J Neurosci. 2019; 39(44):8645-8663.

PMID: 31511428 PMC: 6820215. DOI: 10.1523/JNEUROSCI.1623-19.2019.


References
1.
Nelson S, Turrigiano G . Strength through diversity. Neuron. 2008; 60(3):477-82. PMC: 4919814. DOI: 10.1016/j.neuron.2008.10.020. View

2.
Burton B, Economo M, Lee G, White J . Development of theta rhythmicity in entorhinal stellate cells of the juvenile rat. J Neurophysiol. 2008; 100(6):3144-57. PMC: 2604849. DOI: 10.1152/jn.90424.2008. View

3.
Giocomo L, Hasselmo M . Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J Neurosci. 2008; 28(38):9414-25. PMC: 2990529. DOI: 10.1523/JNEUROSCI.3196-08.2008. View

4.
Fiete I, Burak Y, Brookings T . What grid cells convey about rat location. J Neurosci. 2008; 28(27):6858-71. PMC: 6670990. DOI: 10.1523/JNEUROSCI.5684-07.2008. View

5.
Hafting T, Fyhn M, Molden S, Moser M, Moser E . Microstructure of a spatial map in the entorhinal cortex. Nature. 2005; 436(7052):801-6. DOI: 10.1038/nature03721. View