» Articles » PMID: 20337577

Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery

Overview
Journal Curr Pharm Des
Date 2010 Mar 27
PMID 20337577
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes encoded by 107 genes in the human genome. Together with protein tyrosine kinases (PTKs), PTPs regulate various cellular activities essential for the initiation and maintenance of malignant phenotypes. While PTK inhibitors are now used routinely for cancer treatment, the PTP inhibitor development field is still in the discovery phase. In this article, the suitability of targeting PTPs for novel anticancer drug discovery is discussed. Examples are presented for PTPs that have been targeted for anticancer drug discovery as well as potential new PTP targets for novel anticancer drug discovery.

Citing Articles

Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases.

Pang J, Cen C, Tian Y, Cao X, Hao L, Tao X Transl Psychiatry. 2025; 15(1):6.

PMID: 39794316 PMC: 11724000. DOI: 10.1038/s41398-024-03222-1.


EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling.

Hu Z, Chen P, Li W, Krone M, Zheng S, Saarbach J Sci Adv. 2024; 10(13):eadj7251.

PMID: 38536914 PMC: 10971414. DOI: 10.1126/sciadv.adj7251.


Setting sail: Maneuvering SHP2 activity and its effects in cancer.

Welsh C, Allen S, Madan L Adv Cancer Res. 2023; 160:17-60.

PMID: 37704288 PMC: 10500121. DOI: 10.1016/bs.acr.2023.03.003.


PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy.

Kelm J, Pandey D, Malin E, Kansou H, Arora S, Kumar R Mol Cancer. 2023; 22(1):62.

PMID: 36991452 PMC: 10061819. DOI: 10.1186/s12943-022-01707-5.


From Stem to Sternum: The Role of Shp2 in the Skeleton.

Jensen N, Kelly R, Kelly K, Khoo S, Sidles S, LaRue A Calcif Tissue Int. 2022; 112(4):403-421.

PMID: 36422682 DOI: 10.1007/s00223-022-01042-3.


References
1.
Lee S, Liang F, Guo X, Xie L, Cahill S, Blumenstein M . Design, construction, and intracellular activation of an intramolecularly self-silenced signal transduction inhibitor. Angew Chem Int Ed Engl. 2005; 44(27):4242-4. DOI: 10.1002/anie.200462004. View

2.
Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K, Ekiel I . Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J Biol Chem. 2004; 279(12):11882-9. DOI: 10.1074/jbc.M312905200. View

3.
Dawson M, Xia Z, Jiang T, Ye M, Fontana J, Farhana L . Adamantyl-substituted retinoid-derived molecules that interact with the orphan nuclear receptor small heterodimer partner: effects of replacing the 1-adamantyl or hydroxyl group on inhibition of cancer cell growth, induction of cancer cell.... J Med Chem. 2008; 51(18):5650-62. PMC: 4097887. DOI: 10.1021/jm800456k. View

4.
Qian Y, Chan A, Madhavan R, Peng H . The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters. BMC Neurosci. 2008; 9:70. PMC: 2490698. DOI: 10.1186/1471-2202-9-70. View

5.
Esteban V, Vazquez-Novelle M, Calvo E, Bueno A, Sacristan M . Human Cdc14A reverses CDK1 phosphorylation of Cdc25A on serines 115 and 320. Cell Cycle. 2006; 5(24):2894-8. DOI: 10.4161/cc.5.24.3566. View