Favero J, Luck C, Lipp O, Marinovic W
Psychophysiology. 2024; 61(12):e14687.
PMID: 39315537
PMC: 11579224.
DOI: 10.1111/psyp.14687.
Ding Y, Jiang H, Xu N, Li L
Front Neurosci. 2024; 18:1446929.
PMID: 39211433
PMC: 11359569.
DOI: 10.3389/fnins.2024.1446929.
Mohamad A, Mohrle D, Haddad F, Rose A, Allman B, Schmid S
Transl Psychiatry. 2023; 13(1):321.
PMID: 37852987
PMC: 10584930.
DOI: 10.1038/s41398-023-02629-6.
Kadowaki S, Morimoto T, Pijanowska M, Mori S, Okamoto H
Front Neurol. 2023; 14:1221443.
PMID: 37521303
PMC: 10374305.
DOI: 10.3389/fneur.2023.1221443.
Ye Y, Mattingly M, Sunthimer M, Gay J, Rosen M
J Neurosci. 2023; 43(18):3232-3244.
PMID: 36973014
PMC: 10162457.
DOI: 10.1523/JNEUROSCI.1787-22.2023.
Low Intensity Noise Exposure Enhanced Auditory Loudness and Temporal Processing by Increasing Excitability of DCN.
Shi L, Palmer K, Wang H, Xu-Friedman M, Sun W
Neural Plast. 2022; 2022:6463355.
PMID: 36452876
PMC: 9705115.
DOI: 10.1155/2022/6463355.
The effect of prepulse amplitude and timing on the perception of an electrotactile pulse.
Favero J, Luck C, Lipp O, Marinovic W
Atten Percept Psychophys. 2022; 86(3):1038-1047.
PMID: 36385671
PMC: 11062989.
DOI: 10.3758/s13414-022-02597-x.
A genetically identified population of layer 4 neurons in auditory cortex that contributes to pre-pulse inhibition of the acoustic startle response.
Weible A, Yavorska I, Narayanan A, Wehr M
Front Neural Circuits. 2022; 16:972157.
PMID: 36160948
PMC: 9492996.
DOI: 10.3389/fncir.2022.972157.
Amyloid Pathology in the Central Auditory Pathway of 5XFAD Mice Appears First in Auditory Cortex.
Weible A, Wehr M
J Alzheimers Dis. 2022; 89(4):1385-1402.
PMID: 36031901
PMC: 10097438.
DOI: 10.3233/JAD-220538.
Auditory steady state responses elicited by silent gaps embedded within a broadband noise.
Kadowaki S, Morimoto T, Okamoto H
BMC Neurosci. 2022; 23(1):27.
PMID: 35524192
PMC: 9074354.
DOI: 10.1186/s12868-022-00712-0.
Diverse functions of the auditory cortico-collicular pathway.
Lesicko A, Geffen M
Hear Res. 2022; 425:108488.
PMID: 35351323
PMC: 9485291.
DOI: 10.1016/j.heares.2022.108488.
A Kalirin missense mutation enhances dendritic RhoA signaling and leads to regression of cortical dendritic arbors across development.
Grubisha M, Sun T, Eisenman L, Erickson S, Chou S, Helmer C
Proc Natl Acad Sci U S A. 2021; 118(49).
PMID: 34848542
PMC: 8694055.
DOI: 10.1073/pnas.2022546118.
Prepulse inhibition predicts subjective hearing in rats.
Wake N, Ishizu K, Abe T, Takahashi H
Sci Rep. 2021; 11(1):18902.
PMID: 34556706
PMC: 8460677.
DOI: 10.1038/s41598-021-98167-6.
A Layer 3→5 Circuit in Auditory Cortex That Contributes to Pre-pulse Inhibition of the Acoustic Startle Response.
Weible A, Yavorska I, Kayal D, Duckler U, Wehr M
Front Neural Circuits. 2020; 14:553208.
PMID: 33192336
PMC: 7661757.
DOI: 10.3389/fncir.2020.553208.
Objective evidence of temporal processing deficits in older adults.
Anderson S, Karawani H
Hear Res. 2020; 397:108053.
PMID: 32863099
PMC: 7669636.
DOI: 10.1016/j.heares.2020.108053.
5XFAD mice show early-onset gap encoding deficits in the auditory cortex.
Weible A, Stebritz A, Wehr M
Neurobiol Aging. 2020; 94:101-110.
PMID: 32599514
PMC: 7483957.
DOI: 10.1016/j.neurobiolaging.2020.05.013.
Effects of Gap Position on Perceptual Gap Detection Across Late Childhood and Adolescence.
Gay J, Rosen M, Huyck J
J Assoc Res Otolaryngol. 2020; 21(3):243-258.
PMID: 32488537
PMC: 7392982.
DOI: 10.1007/s10162-020-00756-1.
A Cortico-Collicular Amplification Mechanism for Gap Detection.
Weible A, Yavorska I, Wehr M
Cereb Cortex. 2020; 30(6):3590-3607.
PMID: 32055848
PMC: 7233002.
DOI: 10.1093/cercor/bhz328.
5XFAD Mice Show Early Onset Gap Detection Deficits.
Kaylegian K, Stebritz A, Weible A, Wehr M
Front Aging Neurosci. 2019; 11:66.
PMID: 31001105
PMC: 6454034.
DOI: 10.3389/fnagi.2019.00066.
Addressing variability in the acoustic startle reflex for accurate gap detection assessment.
Longenecker R, Kristaponyte I, Nelson G, Young J, Galazyuk A
Hear Res. 2018; 363:119-135.
PMID: 29602592
PMC: 5940553.
DOI: 10.1016/j.heares.2018.03.013.