» Articles » PMID: 20217264

New Feature Extraction Approach for Epileptic EEG Signal Detection Using Time-frequency Distributions

Overview
Publisher Springer
Date 2010 Mar 11
PMID 20217264
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

This paper describes a new method to identify seizures in electroencephalogram (EEG) signals using feature extraction in time-frequency distributions (TFDs). Particularly, the method extracts features from the Smoothed Pseudo Wigner-Ville distribution using tracks estimated from the McAulay-Quatieri sinusoidal model. The proposed features are the length, frequency, and energy of the principal track. We evaluate the proposed scheme using several datasets and we compute sensitivity, specificity, F-score, receiver operating characteristics (ROC) curve, and percentile bootstrap confidence to conclude that the proposed scheme generalizes well and is a suitable approach for automatic seizure detection at a moderate cost, also opening the possibility of formulating new criteria to detect, classify or analyze abnormal EEGs.

Citing Articles

Extreme value theory inspires explainable machine learning approach for seizure detection.

Karpov O, Grubov V, Maksimenko V, Kurkin S, Smirnov N, Utyashev N Sci Rep. 2022; 12(1):11474.

PMID: 35794223 PMC: 9259747. DOI: 10.1038/s41598-022-15675-9.


An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals.

Kumar G, Chander S, Almadhor A Phys Eng Sci Med. 2022; 45(1):261-272.

PMID: 35167045 DOI: 10.1007/s13246-022-01111-9.


Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network.

Chen X, Zheng Y, Dong C, Song S Front Neuroinform. 2021; 15:605729.

PMID: 34489667 PMC: 8417243. DOI: 10.3389/fninf.2021.605729.


An Automatic Epilepsy Detection Method Based on Improved Inductive Transfer Learning.

Yao Y, Cui Z Comput Math Methods Med. 2020; 2020:5046315.

PMID: 32831900 PMC: 7422481. DOI: 10.1155/2020/5046315.


A review of epileptic seizure detection using machine learning classifiers.

Siddiqui M, Morales-Menendez R, Huang X, Hussain N Brain Inform. 2020; 7(1):5.

PMID: 32451639 PMC: 7248143. DOI: 10.1186/s40708-020-00105-1.


References
1.
Gotman J . Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol. 1982; 54(5):530-40. DOI: 10.1016/0013-4694(82)90038-4. View

2.
He P, Wilson G, Russell C . Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Comput. 2004; 42(3):407-12. DOI: 10.1007/BF02344717. View

3.
Barlow J . Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J Clin Neurophysiol. 1985; 2(3):267-304. DOI: 10.1097/00004691-198507000-00005. View

4.
Tzallas A, Tsipouras M, Fotiadis D . The use of time-frequency distributions for epileptic seizure detection in EEG recordings. Annu Int Conf IEEE Eng Med Biol Soc. 2007; 2007:3-6. DOI: 10.1109/IEMBS.2007.4352208. View

5.
Tognola G, Ravazzani P, Minicucci F, Locatelli T, Grandori F, Ruohonen J . Analysis of temporal non-stationarities in EEG signals by means of parametric modelling. Technol Health Care. 1996; 4(2):169-85. View