» Articles » PMID: 20208155

X-ray Investigation of Gene-engineered Human Insulin Crystallized from a Solution Containing Polysialic Acid

Overview
Date 2010 Mar 9
PMID 20208155
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Attempts to crystallize the noncovalent complex of recombinant human insulin with polysialic acid were carried out under normal and microgravity conditions. Both crystal types belonged to the same space group, I2(1)3, with unit-cell parameters a = b = c = 77.365 A, alpha = beta = gamma = 90.00 degrees. The reported space group and unit-cell parameters are almost identical to those of cubic insulin reported in the PDB. The results of X-ray studies confirmed that the crystals obtained were cubic insulin crystals and that they contained no polysialic acid or its fragments. Electron-density maps were calculated using X-ray diffraction sets from earth-grown and microgravity-grown crystals and the three-dimensional structure of the insulin molecule was determined and refined. The conformation and secondary-structural elements of the insulin molecule in different crystal forms were compared.

Citing Articles

An Orthogonal Workflow of Electrochemical, Computational, and Thermodynamic Methods Reveals Limitations of Using a Literature-Reported Insulin Binding Peptide in Biosensors.

Austin K, Torres J, Waters J, Balog E, Halpern J, Pantazes R ACS Omega. 2024; 9(37):39219-39231.

PMID: 39310205 PMC: 11411520. DOI: 10.1021/acsomega.4c06481.


Mechanistic Insights Behind the Self-Assembly of Human Insulin under the Influence of Surface-Engineered Gold Nanoparticles.

Flint Z, Grannemann H, Baffour K, Koti N, Taylor E, Grier E ACS Chem Neurosci. 2024; 15(11):2359-2371.

PMID: 38728258 PMC: 11157486. DOI: 10.1021/acschemneuro.4c00226.


The T structure of polycrystalline cubic human insulin.

Triandafillidis D, Karavassili F, Spiliopoulou M, Valmas A, Athanasiadou M, Nikolaras G Acta Crystallogr D Struct Biol. 2023; 79(Pt 5):374-386.

PMID: 37039669 PMC: 10167666. DOI: 10.1107/S2059798323001328.


Identifying signatures of proteolytic stability and monomeric propensity in O-glycosylated insulin using molecular simulation.

Hsu W, Ramirez D, Sammakia T, Tan Z, Shirts M J Comput Aided Mol Des. 2022; 36(4):313-328.

PMID: 35507105 PMC: 10353491. DOI: 10.1007/s10822-022-00453-6.


General method to stabilize mesophilic proteins in hyperthermal water.

Xin X, Xu Y, Shi H, Liu X iScience. 2021; 24(5):102503.

PMID: 34113834 PMC: 8169989. DOI: 10.1016/j.isci.2021.102503.


References
1.
Murshudov G, Vagin A, Dodson E . Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997; 53(Pt 3):240-55. DOI: 10.1107/S0907444996012255. View

2.
Yu B, Caspar D . Structure of cubic insulin crystals in glucose solutions. Biophys J. 1998; 74(1):616-22. PMC: 1299414. DOI: 10.1016/S0006-3495(98)77820-8. View

3.
Veronese F, Pasut G . PEGylation, successful approach to drug delivery. Drug Discov Today. 2005; 10(21):1451-8. DOI: 10.1016/S1359-6446(05)03575-0. View

4.
Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2126-32. DOI: 10.1107/S0907444904019158. View

5.
Adams P, Grosse-Kunstleve R, Hung L, Ioerger T, McCoy A, Moriarty N . PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002; 58(Pt 11):1948-54. DOI: 10.1107/s0907444902016657. View