» Articles » PMID: 20201770

The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration

Overview
Publisher Begell House
Date 2010 Mar 6
PMID 20201770
Citations 166
Authors
Affiliations
Soon will be listed here.
Abstract

Articular cartilage repair and regeneration continue to be largely intractable because of the poor regenerative properties of this tissue. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased articular cartilage functionality, has evoked intense interest and holds great potential for improving articular cartilage therapy. This review provides an overall description of the current state of and progress in articular cartilage repair and regeneration. Traditional therapies and related problems are introduced. More importantly, a variety of promising cell sources, biocompatible tissue engineered scaffolds, scaffoldless techniques, growth factors, and mechanical stimuli used in current articular cartilage tissue engineering are reviewed. Finally, the technical and regulatory challenges of articular cartilage tissue engineering and possible future directions are also discussed.

Citing Articles

Injectable Thermosensitive Thiol-Modified NIPAAm--Chitosan Hydrogels for Cartilage Regeneration in a Rabbit Osteoarthritis Model.

Ching P, Chang Y, Weng C, Wang J, Yeh M ACS Omega. 2025; 10(8):8523-8537.

PMID: 40060830 PMC: 11886913. DOI: 10.1021/acsomega.4c10829.


The Expression Level of SOX Family Transcription Factors' mRNA as a Diagnostic Marker for Osteoarthritis.

Baran K, Brzezianska-Lasota E, Kryczka J, Boncela J, Czechowska A, Kopacz K J Clin Med. 2025; 14(4).

PMID: 40004707 PMC: 11856735. DOI: 10.3390/jcm14041176.


miR-223 promotes cartilage differentiation of bone marrow-derived mesenchymal stem cells and protects against osteoarthritis by suppressing NLRP-3 expression.

Min N, Ma J, Shi L, Wang L, Liu C, Zhang Y Arch Med Sci. 2025; 20(6):2002-2008.

PMID: 39967931 PMC: 11831357. DOI: 10.5114/aoms.2020.100640.


Highly Flexible Methyl Cellulose/Gelatin Hydrogels for Potential Cartilage Tissue Engineering Applications.

Karaca M, Khalili V, Ege D Biopolymers. 2025; 116(1):e23641.

PMID: 39775686 PMC: 11707504. DOI: 10.1002/bip.23641.


Direct Scaffold-Coupled Electrical Stimulation of Chondrogenic Progenitor Cells through Graphene Foam Bioscaffolds to Control Mechanical Properties of Graphene Foam - Cell Composites.

Sawyer M, Semodji A, Nielson O, Rektor A, Burgoyne H, Eppel M Res Sq. 2025; .

PMID: 39764126 PMC: 11703340. DOI: 10.21203/rs.3.rs-5589589/v1.


References
1.
Chunmeng S, Tianmin C, Yongping S, Xinze R, Yue M, Jifu Q . Effects of dermal multipotent cell transplantation on skin wound healing. J Surg Res. 2004; 121(1):13-9. DOI: 10.1016/j.jss.2004.04.008. View

2.
Gikas P, Bayliss L, Bentley G, Briggs T . An overview of autologous chondrocyte implantation. J Bone Joint Surg Br. 2009; 91(8):997-1006. DOI: 10.1302/0301-620X.91B8.21824. View

3.
Chen H, Sung L, Lo W, Chuang C, Wang Y, Lin J . Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther. 2007; 15(4):309-17. DOI: 10.1038/sj.gt.3303087. View

4.
Jin M, Frank E, Quinn T, Hunziker E, Grodzinsky A . Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001; 395(1):41-8. DOI: 10.1006/abbi.2001.2543. View

5.
Ameer G, Mahmood T, Langer R . A biodegradable composite scaffold for cell transplantation. J Orthop Res. 2002; 20(1):16-9. DOI: 10.1016/S0736-0266(01)00074-2. View