» Articles » PMID: 20194735

Leptin Therapy in Insulin-deficient Type I Diabetes

Overview
Specialty Science
Date 2010 Mar 3
PMID 20194735
Citations 159
Authors
Affiliations
Soon will be listed here.
Abstract

In nonobese diabetic mice with uncontrolled type 1 diabetes, leptin therapy alone or combined with low-dose insulin reverses the catabolic state through suppression of hyperglucagonemia. Additionally, it mimics the anabolic actions of insulin monotherapy and normalizes hemoglobin A1c with far less glucose variability. We show that leptin therapy, like insulin, normalizes the levels of a wide array of hepatic intermediary metabolites in multiple chemical classes, including acylcarnitines, organic acids (tricarboxylic acid cycle intermediates), amino acids, and acyl CoAs. In contrast to insulin monotherapy, however, leptin lowers both lipogenic and cholesterologenic transcription factors and enzymes and reduces plasma and tissue lipids. The results imply that leptin administration may have multiple short- and long-term advantages over insulin monotherapy for type 1 diabetes.

Citing Articles

A feeding-induced myokine modulates glucose homeostasis.

Shi X, Hu X, Fang X, Jia L, Wei F, Peng Y Nat Metab. 2025; 7(1):68-83.

PMID: 39747483 DOI: 10.1038/s42255-024-01175-9.


Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases.

Kolodziej-Sobczak D, Sobczak L, Laczkowski K Int J Mol Sci. 2024; 25(13).

PMID: 39000142 PMC: 11241624. DOI: 10.3390/ijms25137033.


Leptin and ghrelin dynamics: unraveling their influence on food intake, energy balance, and the pathophysiology of type 2 diabetes mellitus.

Vijayashankar U, Ramashetty R, Rajeshekara M, Vishwanath N, Yadav A, Prashant A J Diabetes Metab Disord. 2024; 23(1):427-440.

PMID: 38932792 PMC: 11196531. DOI: 10.1007/s40200-024-01418-2.


S100A9 exerts insulin-independent antidiabetic and anti-inflammatory effects.

Ursino G, Lucibello G, Teixeira P, Hofler A, Veyrat-Durebex C, Odouard S Sci Adv. 2024; 10(1):eadj4686.

PMID: 38170783 PMC: 10796079. DOI: 10.1126/sciadv.adj4686.


Antidiabetic and antihyperlipidemic activities of . extract and the regulation of Akt phosphorylation, gluconeogenesis, and peroxisome proliferator-activated receptor α in streptozotocin-induced diabetic mice.

Huang S, Lin C, Chang W, Shih C Food Nutr Res. 2023; 67.

PMID: 37850072 PMC: 10578056. DOI: 10.29219/fnr.v67.9854.


References
1.
DOBBS R, Sakurai H, Sasaki H, Faloona G, Valverde I, Baetens D . Glucagon: role in the hyperglycemia of diabetes mellitus. Science. 1975; 187(4176):544-7. DOI: 10.1126/science.1089999. View

2.
Randle P, Garland P, Hales C, Newsholme E . The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963; 1(7285):785-9. DOI: 10.1016/s0140-6736(63)91500-9. View

3.
Shimomura I, Matsuda M, Hammer R, Bashmakov Y, Brown M, Goldstein J . Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell. 2000; 6(1):77-86. View

4.
Ronnebaum S, Ilkayeva O, Burgess S, Joseph J, Lu D, Stevens R . A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem. 2006; 281(41):30593-602. DOI: 10.1074/jbc.M511908200. View

5.
Liu H, Cao S, Hong T, Han J, Liu Z, Cao W . Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem. 2009; 284(40):27090-100. PMC: 2785638. DOI: 10.1074/jbc.M109.016675. View