» Articles » PMID: 20192775

Phase Separation in Biological Membranes: Integration of Theory and Experiment

Overview
Publisher Annual Reviews
Specialty Biophysics
Date 2010 Mar 3
PMID 20192775
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Lipid bilayer model membranes that contain a single lipid species can undergo transitions between ordered and disordered phases, and membranes that contain a mixture of lipid species can undergo phase separations. Studies of these transformations are of interest for what they can tell us about the interaction energies of lipid molecules of different species and conformations. Nanoscopic phases (<200 nm) can provide a model for membrane rafts, specialized membrane domains enriched in cholesterol and sphingomyelin, which are believed to have essential biological functions in cell membranes. Crucial questions are whether lipid nanodomains can exist in stable equilibrium in membranes and what is the distribution of their sizes and lifetimes in membranes of different composition. Theoretical methods have supplied much information on these questions, but better experimental methods are needed to detect and characterize nanodomains under normal membrane conditions. This review summarizes linkages between theoretical and experimental studies of phase separation in lipid bilayer model membranes.

Citing Articles

Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion.

Sannigrahi A, Ghosh S, Pradhan S, Jana P, Jawed J, Majumdar S EMBO Rep. 2024; 25(12):5561-5598.

PMID: 39482488 PMC: 11624268. DOI: 10.1038/s44319-024-00302-7.


Partitioning to ordered membrane domains regulates the kinetics of secretory traffic.

Castello-Serrano I, Heberle F, Diaz-Rohrer B, Ippolito R, Shurer C, Lujan P Elife. 2024; 12.

PMID: 38837189 PMC: 11152573. DOI: 10.7554/eLife.89306.


Physiological and pathological effects of phase separation in the central nervous system.

Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J J Mol Med (Berl). 2024; 102(5):599-615.

PMID: 38441598 PMC: 11055734. DOI: 10.1007/s00109-024-02435-7.


Hierarchical morphogenesis of swallowtail butterfly wing scale nanostructures.

Seah K, Saranathan V Elife. 2023; 12.

PMID: 37768710 PMC: 10538957. DOI: 10.7554/eLife.89082.


Raman Imaging Reveals Insights into Membrane Phase Biophysics in Cells.

Shen Y, Wei L, Min W J Phys Chem B. 2023; 127(28):6233-6240.

PMID: 37431772 PMC: 11209838. DOI: 10.1021/acs.jpcb.3c03125.


References
1.
Campelo F, Hernandez-Machado A . Model for curvature-driven pearling instability in membranes. Phys Rev Lett. 2007; 99(8):088101. DOI: 10.1103/PhysRevLett.99.088101. View

2.
Lehtonen J, Holopainen J, Kinnunen P . Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Biophys J. 1996; 70(4):1753-60. PMC: 1225144. DOI: 10.1016/S0006-3495(96)79738-2. View

3.
Safran S, Pincus P, Andelman D . Theory of spontaneous vesicle formation in surfactant mixtures. Science. 1990; 248(4953):354-6. DOI: 10.1126/science.248.4953.354. View

4.
Pandit S, Scott H . Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta. 2008; 1788(1):136-48. PMC: 2664294. DOI: 10.1016/j.bbamem.2008.09.004. View

5.
Silvius J . Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. Biophys J. 2003; 85(2):1034-45. PMC: 1303224. DOI: 10.1016/S0006-3495(03)74542-1. View