» Articles » PMID: 20189939

BioNet: an R-Package for the Functional Analysis of Biological Networks

Overview
Journal Bioinformatics
Specialty Biology
Date 2010 Mar 2
PMID 20189939
Citations 120
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Increasing quantity and quality of data in transcriptomics and interactomics create the need for integrative approaches to network analysis. Here, we present a comprehensive R-package for the analysis of biological networks including an exact and a heuristic approach to identify functional modules.

Results: The BioNet package provides an extensive framework for integrated network analysis in R. This includes the statistics for the integration of transcriptomic and functional data with biological networks, the scoring of nodes as well as methods for network search and visualization.

Availability: The BioNet package and a tutorial are available from http://bionet.bioapps.biozentrum.uni-wuerzburg.de.

Citing Articles

A comprehensive benchmark study of methods for identifying significantly perturbed subnetworks in cancer.

Yang L, Chen R, Goodison S, Sun Y Brief Bioinform. 2024; 26(1).

PMID: 39737568 PMC: 11684898. DOI: 10.1093/bib/bbae692.


Selective loss of Y chromosomes in lung adenocarcinoma modulates the tumor immune environment through cancer/testis antigens.

Fischer J, Shutta K, Chen C, Fanfani V, Saha E, Mandros P bioRxiv. 2024; .

PMID: 39345481 PMC: 11430018. DOI: 10.1101/2024.09.19.613876.


Sex differences and immune correlates of Long COVID development, persistence, and resolution.

Hamlin R, Pienkos S, Chan L, Stabile M, Pinedo K, Rao M bioRxiv. 2024; .

PMID: 38948732 PMC: 11212991. DOI: 10.1101/2024.06.18.599612.


A network-based drug prioritization and combination analysis for the MEK5/ERK5 pathway in breast cancer.

Odongo R, Demiroglu-Zergeroglu A, Cakir T BioData Min. 2024; 17(1):5.

PMID: 38378612 PMC: 10880212. DOI: 10.1186/s13040-024-00357-1.


Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein-Protein Interaction Networks.

Yang L, Chen R, Melendy T, Goodison S, Sun Y Cancers (Basel). 2023; 15(16).

PMID: 37627118 PMC: 10452419. DOI: 10.3390/cancers15164090.