» Articles » PMID: 20189938

Post Hoc Power Estimation in Large-scale Multiple Testing Problems

Overview
Journal Bioinformatics
Specialty Biology
Date 2010 Mar 2
PMID 20189938
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The statistical power or multiple Type II error rate in large-scale multiple testing problems as, for example, in gene expression microarray experiments, depends on typically unknown parameters and is therefore difficult to assess a priori. However, it has been suggested to estimate the multiple Type II error rate post hoc, based on the observed data.

Methods: We consider a class of post hoc estimators that are functions of the estimated proportion of true null hypotheses among all hypotheses. Numerous estimators for this proportion have been proposed and we investigate the statistical properties of the derived multiple Type II error rate estimators in an extensive simulation study.

Results: The performance of the estimators in terms of the mean squared error depends sensitively on the distributional scenario. Estimators based on empirical distributions of the null hypotheses are superior in the presence of strongly correlated test statistics.

Availability: R-code to compute all considered estimators based on P-values and supplementary material is available on the authors web page http://statistics.msi.meduniwien.ac.at/index.php?page=pageszfnr.

Citing Articles

Impact of adaptive filtering on power and false discovery rate in RNA-seq experiments.

Zehetmayer S, Posch M, Graf A BMC Bioinformatics. 2022; 23(1):388.

PMID: 36153479 PMC: 9509565. DOI: 10.1186/s12859-022-04928-z.


Sample size reassessment for a two-stage design controlling the false discovery rate.

Zehetmayer S, Graf A, Posch M Stat Appl Genet Mol Biol. 2015; 14(5):429-42.

PMID: 26461844 PMC: 4789494. DOI: 10.1515/sagmb-2014-0025.


False discovery rate control in two-stage designs.

Zehetmayer S, Posch M BMC Bioinformatics. 2012; 13:81.

PMID: 22559038 PMC: 3496575. DOI: 10.1186/1471-2105-13-81.


Cross-platform comparison of microarray data using order restricted inference.

Klinglmueller F, Tuechler T, Posch M Bioinformatics. 2011; 27(7):953-60.

PMID: 21317143 PMC: 4766743. DOI: 10.1093/bioinformatics/btr066.

References
1.
Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A . False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics. 2005; 21(13):3017-24. DOI: 10.1093/bioinformatics/bti448. View

2.
Pounds S, Morris S . Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics. 2003; 19(10):1236-42. DOI: 10.1093/bioinformatics/btg148. View

3.
Dalmasso C, Broet P, Moreau T . A simple procedure for estimating the false discovery rate. Bioinformatics. 2004; 21(5):660-8. DOI: 10.1093/bioinformatics/bti063. View

4.
Gruvberger S, Ringner M, Chen Y, Panavally S, Saal L, Borg A . Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 2001; 61(16):5979-84. View

5.
Senn S, Bretz F . Power and sample size when multiple endpoints are considered. Pharm Stat. 2007; 6(3):161-70. DOI: 10.1002/pst.301. View