Yu Z, You G
Pharmaceutics. 2024; 16(11).
PMID: 39598479
PMC: 11597148.
DOI: 10.3390/pharmaceutics16111355.
Du C, Liu M, Yan Y, Guo X, Cao X, Jiao Y
Plant Cell. 2024; 36(9):3277-3297.
PMID: 38924024
PMC: 11371175.
DOI: 10.1093/plcell/koae194.
Ghosh S, Mellado Sanchez M, Sue-Ob K, Roy D, Jones A, Blazquez M
Plant Cell. 2024; 36(9):3131-3144.
PMID: 38923935
PMC: 11371177.
DOI: 10.1093/plcell/koae192.
Yang F, Zhao L, Song L, Han Y, You C, An J
Hortic Res. 2024; 11(4):uhae029.
PMID: 38585016
PMC: 10995623.
DOI: 10.1093/hr/uhae029.
Elakhdar A, Slaski J, Kubo T, Hamwieh A, Hernandez Ramirez G, Beattie A
Front Plant Sci. 2023; 14:1159016.
PMID: 37346141
PMC: 10279893.
DOI: 10.3389/fpls.2023.1159016.
A robust method for identification of plant SUMOylation substrates in a library-based reconstitution system.
Lai R, Li W, Xu Z, Liu W, Zeng Q, Lin W
Plant Commun. 2023; 4(4):100573.
PMID: 36905123
PMC: 10363499.
DOI: 10.1016/j.xplc.2023.100573.
Understanding SUMO-mediated adaptive responses in plants to improve crop productivity.
Clark L, Sue-Ob K, Mukkawar V, Jones A, Sadanandom A
Essays Biochem. 2022; 66(2):155-168.
PMID: 35920279
PMC: 9400072.
DOI: 10.1042/EBC20210068.
The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple.
Jiang H, Zhou L, Gao H, Wang X, Li Z, Li Y
Plant Physiol. 2022; 189(4):2044-2060.
PMID: 35522008
PMC: 9342976.
DOI: 10.1093/plphys/kiac211.
An optimized protocol to assess SUMOylation in the plant using two-component DEX-inducible transformants.
Dong Y, Hu Z, Ostergaard L
STAR Protoc. 2022; 3(1):101197.
PMID: 35243380
PMC: 8885766.
DOI: 10.1016/j.xpro.2022.101197.
SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis.
Castro P, Couto D, Santos M, Freitas S, Lourenco T, Dias E
Plant Physiol. 2022; 189(2):934-954.
PMID: 35238389
PMC: 9157161.
DOI: 10.1093/plphys/kiac085.
SUMO conjugating enzyme: a vital player of SUMO pathway in plants.
Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N
Physiol Mol Biol Plants. 2021; 27(10):2421-2431.
PMID: 34744375
PMC: 8526628.
DOI: 10.1007/s12298-021-01075-2.
Overexpression of Rice Os Gene Confers Drought Tolerance in Arabidopsis.
Kim S, Lee K, Kwak J, Kwon D, Song J, Seo H
Plants (Basel). 2021; 10(10).
PMID: 34685986
PMC: 8541125.
DOI: 10.3390/plants10102181.
Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor.
Mercier C, Roux B, Have M, Le Poder L, Duong N, David P
Plant J. 2021; 108(5):1507-1521.
PMID: 34612534
PMC: 9298234.
DOI: 10.1111/tpj.15525.
Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress.
Saini S, Kaur N, Marothia D, Singh B, Singh V, Gantet P
Plants (Basel). 2021; 10(8).
PMID: 34451587
PMC: 8399380.
DOI: 10.3390/plants10081544.
The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource.
van Wijk K, Leppert T, Sun Q, Boguraev S, Sun Z, Mendoza L
Plant Cell. 2021; 33(11):3421-3453.
PMID: 34411258
PMC: 8566204.
DOI: 10.1093/plcell/koab211.
Ubiquitylome analysis reveals the involvement of ubiquitination in the bast fiber growth of ramie.
He Q, Zeng Z, Li F, Huang R, Wang Y, Liu T
Planta. 2021; 254(1):1.
PMID: 34081200
DOI: 10.1007/s00425-021-03652-x.
Posttranslational Modifications: Regulation of Nitrogen Utilization and Signaling.
Wang W, Li A, Zhang Z, Chu C
Plant Cell Physiol. 2021; 62(4):543-552.
PMID: 33493288
PMC: 8462382.
DOI: 10.1093/pcp/pcab008.
Regulation of Aluminum Resistance in Arabidopsis Involves the SUMOylation of the Zinc Finger Transcription Factor STOP1.
Fang Q, Zhang J, Zhang Y, Fan N, van den Burg H, Huang C
Plant Cell. 2020; 32(12):3921-3938.
PMID: 33087527
PMC: 7721324.
DOI: 10.1105/tpc.20.00687.
Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously.
Esmaeili N, Cai Y, Tang F, Zhu X, Smith J, Mishra N
Plant Biotechnol J. 2020; 19(3):462-476.
PMID: 32902115
PMC: 7955890.
DOI: 10.1111/pbi.13476.
Ubiquitin-Like protein 5 interacts with the silencing suppressor p3 of rice stripe virus and mediates its degradation through the 26S proteasome pathway.
Chen B, Lin L, Lu Y, Peng J, Zheng H, Yang Q
PLoS Pathog. 2020; 16(8):e1008780.
PMID: 32866188
PMC: 7485977.
DOI: 10.1371/journal.ppat.1008780.