» Articles » PMID: 20185573

Evolved Orthogonal Ribosome Purification for in Vitro Characterization

Overview
Specialty Biochemistry
Date 2010 Feb 27
PMID 20185573
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

We developed orthogonal ribosome-mRNA pairs in which the orthogonal ribosome (O-ribosome) specifically translates the orthogonal mRNA and the orthogonal mRNA is not a substrate for cellular ribosomes. O-ribosomes have been used to create new cellular circuits to control gene expression in new ways, they have been used to provide new information about the ribosome, and they form a crucial part of foundational technologies for genetic code expansion and encoded and evolvable polymer synthesis in cells. The production of O-ribosomes in the cell makes it challenging to study the properties of O-ribosomes in vitro, because no method exists to purify functional O-ribosomes from cellular ribosomes and other cellular components. Here we present a method for the affinity purification of O-ribosomes, via tagging of the orthogonal 16S ribosomal RNA. We demonstrate that the purified O-ribosomes are pure by primer extension assays, and structurally homogenous by gel electrophoresis and sucrose gradients. We demonstrate the utility of this purification method by providing a preliminary in vitro characterization of Ribo-X, an O-ribosome previously evolved for enhanced unnatural amino acid incorporation in response to amber codons. Our data suggest that the basis of Ribo-X's in vivo activity is a decreased affinity for RF1.

Citing Articles

Ribosome Pool Engineering Increases Protein Biosynthesis Yields.

Kofman C, Willi J, Karim A, Jewett M ACS Cent Sci. 2024; 10(4):871-881.

PMID: 38680563 PMC: 11046459. DOI: 10.1021/acscentsci.3c01413.


Direct measurements of mRNA translation kinetics in living cells.

Metelev M, Lundin E, Volkov I, Gynna A, Elf J, Johansson M Nat Commun. 2022; 13(1):1852.

PMID: 35388013 PMC: 8986856. DOI: 10.1038/s41467-022-29515-x.


Strategies for in vitro engineering of the translation machinery.

Hammerling M, Kruger A, Jewett M Nucleic Acids Res. 2019; 48(3):1068-1083.

PMID: 31777928 PMC: 7026604. DOI: 10.1093/nar/gkz1011.


Controlling orthogonal ribosome subunit interactions enables evolution of new function.

Schmied W, Tnimov Z, Uttamapinant C, Rae C, Fried S, Chin J Nature. 2018; 564(7736):444-448.

PMID: 30518861 PMC: 6525102. DOI: 10.1038/s41586-018-0773-z.


Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

Gan R, Perez J, Carlson E, Ntai I, Isaacs F, Kelleher N Biotechnol Bioeng. 2016; 114(5):1074-1086.

PMID: 27987323 PMC: 5360495. DOI: 10.1002/bit.26239.


References
1.
Neumann H, Peak-Chew S, Chin J . Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat Chem Biol. 2008; 4(4):232-4. DOI: 10.1038/nchembio.73. View

2.
Youngman E, Green R . Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods. 2005; 36(3):305-12. DOI: 10.1016/j.ymeth.2005.04.007. View

3.
Caskey C, Beaudet A, Scolnick E, Rosman M . Hydrolysis of fMet-tRNA by peptidyl transferase. Proc Natl Acad Sci U S A. 1971; 68(12):3163-7. PMC: 389613. DOI: 10.1073/pnas.68.12.3163. View

4.
Rackham O, Wang K, Chin J . Functional epitopes at the ribosome subunit interface. Nat Chem Biol. 2006; 2(5):254-8. DOI: 10.1038/nchembio783. View

5.
Chin J, Cropp T, Anderson J, Mukherji M, Zhang Z, Schultz P . An expanded eukaryotic genetic code. Science. 2003; 301(5635):964-7. DOI: 10.1126/science.1084772. View