» Articles » PMID: 20176955

Input-specific Synaptic Plasticity in the Amygdala is Regulated by Neuroligin-1 Via Postsynaptic NMDA Receptors

Overview
Specialty Science
Date 2010 Feb 24
PMID 20176955
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Despite considerable evidence for a critical role of neuroligin-1 in the specification of excitatory synapses, the cellular mechanisms and physiological roles of neuroligin-1 in mature neural circuits are poorly understood. In mutant mice deficient in neuroligin-1, or adult rats in which neuroligin-1 was depleted, we have found that neuroligin-1 stabilizes the NMDA receptors residing in the postsynaptic membrane of amygdala principal neurons, which allows for a normal range of NMDA receptor-mediated synaptic transmission. We observed marked decreases in NMDA receptor-mediated synaptic currents at afferent inputs to the amygdala of neuroligin-1 knockout mice. However, the knockout mice exhibited a significant impairment in spike-timing-dependent long-term potentiation (STD-LTP) at the thalamic but not the cortical inputs to the amygdala. Subsequent electrophysiological analyses indicated that STD-LTP in the cortical pathway is largely independent of activation of postsynaptic NMDA receptors. These findings suggest that neuroligin-1 can modulate, in a pathway-specific manner, synaptic plasticity in the amygdala circuits of adult animals, likely by regulating the abundance of postsynaptic NMDA receptors.

Citing Articles

Input-specific localization of NMDA receptor GluN2 subunits in thalamocortical neurons.

Topolski M, Gilmore B, Khondaker R, Michniak J, Studtmann C, Chen Y bioRxiv. 2024; .

PMID: 39229083 PMC: 11370540. DOI: 10.1101/2024.08.23.607324.


Impact of Maternal Environment and Inflammation on Fetal Neurodevelopment.

Lubrano C, Parisi F, Cetin I Antioxidants (Basel). 2024; 13(4).

PMID: 38671901 PMC: 11047368. DOI: 10.3390/antiox13040453.


Clenching the Strings of Bruxism Etiopathogenesis: Association Analyses on Genetics and Environmental Risk Factors in a Deeply Characterized Italian Cohort.

Pecori A, Luppieri V, Santin A, Spedicati B, Zampieri S, Cadenaro M Biomedicines. 2024; 12(2).

PMID: 38397906 PMC: 10887134. DOI: 10.3390/biomedicines12020304.


The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders.

Lee K, Mills Z, Cheung P, Cheyne J, Montgomery J Pharmaceuticals (Basel). 2023; 16(1).

PMID: 36678498 PMC: 9866730. DOI: 10.3390/ph16010001.


Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins.

Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J J Transl Med. 2022; 20(1):418.

PMID: 36088343 PMC: 9463862. DOI: 10.1186/s12967-022-03625-y.


References
1.
Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K . Binding of neuroligins to PSD-95. Science. 1997; 277(5331):1511-5. DOI: 10.1126/science.277.5331.1511. View

2.
Barria A, Malinow R . Subunit-specific NMDA receptor trafficking to synapses. Neuron. 2002; 35(2):345-53. DOI: 10.1016/s0896-6273(02)00776-6. View

3.
Riccio A, Li Y, Moon J, Kim K, Smith K, Rudolph U . Essential role for TRPC5 in amygdala function and fear-related behavior. Cell. 2009; 137(4):761-72. PMC: 2719954. DOI: 10.1016/j.cell.2009.03.039. View

4.
Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, Bissiere S . Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron. 2005; 45(1):119-31. DOI: 10.1016/j.neuron.2004.12.019. View

5.
Umemiya M, Senda M, Murphy T . Behaviour of NMDA and AMPA receptor-mediated miniature EPSCs at rat cortical neuron synapses identified by calcium imaging. J Physiol. 1999; 521 Pt 1:113-22. PMC: 2269647. DOI: 10.1111/j.1469-7793.1999.00113.x. View