» Articles » PMID: 20174618

A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties

Overview
Date 2010 Feb 23
PMID 20174618
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

We report a facile one-step hydrothermal approach to the synthesis of iron oxide (Fe(3)O(4)) nanoparticles (NPs) with controllable diameters, narrow size distribution, and tunable magnetic properties. In this approach, the iron oxide NPs were fabricated by oxidation of FeCl(2)·4H(2)O in basic aqueous solution under an elevated temperature and pressure. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies reveal that the particles are highly crystalline and that the diameters of the particles can be tuned from 15 nm to 31 nm through the variation of the reaction conditions. The NPs exhibit high saturation magnetization in the range of 53.3 ~ 97.4 emu/g and their magnetic behavior can be either ferromagnetic or superparamagnetic depending on the particle size. A superconducting quantum interference device magnetorelaxometry (SQUID-MRX) study shows that the size of the NPs significantly affects the detection sensitivity. The investigated iron oxide NPs may find many potential biological applications in cancer diagnosis and treatment.

Citing Articles

Magnetic Chitosan Nanocomposites Derived from Industrial Solid Waste: A Promising Approach for Arsenic(III) Remediation.

Tri L, Thi Mai Huong P, Huong N ACS Omega. 2025; 10(4):3351-3360.

PMID: 39926551 PMC: 11799982. DOI: 10.1021/acsomega.4c05955.


Second phase CuO boosted photocatalytic activity of fluorine doped CuO nanoparticles.

Dastider A, Saha H, Anik M, Jamal M, Billah M RSC Adv. 2024; 14(17):11677-11693.

PMID: 38605896 PMC: 11007595. DOI: 10.1039/d3ra08790e.


Stem Extract Facilitated the Synthesis of Iron Oxide Nanoparticles as an Adsorbent to Remove Congo Red Dye.

Yesmin S, Mahiuddin M, Nazmul Islam A, Karim K, Saha P, Khan M ACS Omega. 2024; 9(9):10727-10737.

PMID: 38463303 PMC: 10918656. DOI: 10.1021/acsomega.3c09557.


The effect of temperature on the synthesis of magnetite nanoparticles by the coprecipitation method.

Gutierrez F, Souza Lima I, De Falco A, Ereias B, Baffa O, Diego de Abreu Lima C Heliyon. 2024; 10(4):e25781.

PMID: 38390158 PMC: 10881852. DOI: 10.1016/j.heliyon.2024.e25781.


Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases.

Tomitaka A, Vashist A, Kolishetti N, Nair M Nanoscale Adv. 2023; 5(17):4354-4367.

PMID: 37638161 PMC: 10448356. DOI: 10.1039/d3na00180f.


References
1.
Gupta A, Gupta M . Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26(18):3995-4021. DOI: 10.1016/j.biomaterials.2004.10.012. View

2.
Shi X, Thomas T, Myc L, Kotlyar A, Baker Jr J . Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys. 2007; 9(42):5712-20. DOI: 10.1039/b709147h. View

3.
Chemla Y, Grossman H, Poon Y, McDermott R, Stevens R, Alper M . Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A. 2000; 97(26):14268-72. PMC: 18907. DOI: 10.1073/pnas.97.26.14268. View

4.
Grossman H, MYERS W, Vreeland V, Bruehl R, Alper M, Bertozzi C . Detection of bacteria in suspension by using a superconducting quantum interference device. Proc Natl Acad Sci U S A. 2003; 101(1):129-34. PMC: 314150. DOI: 10.1073/pnas.0307128101. View

5.
Cohen D . Ferromagnetic contamination in the lungs and other organs of the human body. Science. 1973; 180(4087):745-8. DOI: 10.1126/science.180.4087.745. View