» Articles » PMID: 20169462

Renal Infiltration of Immunocompetent Cells: Cause and Effect of Sodium-sensitive Hypertension

Overview
Publisher Springer
Specialty Nephrology
Date 2010 Feb 20
PMID 20169462
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

This review examines the participation of immunocompetent cells that accumulate in tubulointerstitial areas of the kidney in the pathogenesis of sodium-sensitive hypertension. Tubulointerstitial inflammation is a universal feature in experimental models of sodium-sensitive hypertension, and the suppression of inflammation and its constant companions, oxidative stress and renal angiotensin II activity, ameliorates or prevents hypertension. Human studies also support the association between renal inflammation and hypertension. The proinflammatory effects of a high sodium diet and the mechanisms by which renal inflammation induces sodium retention are discussed. It is suggested that autoimmune reactivity may play a role in the development and maintenance of renal inflammation in hypertensive states.

Citing Articles

The immune regulatory role of lymphangiogenesis in kidney disease.

Lu X, Ma K, Ren J, Peng H, Wang J, Wang X J Transl Med. 2024; 22(1):1053.

PMID: 39578812 PMC: 11583545. DOI: 10.1186/s12967-024-05859-4.


Elevated Salt or Angiotensin II Levels Induce CD38+ Innate Immune Cells in the Presence of Granulocyte-Macrophage Colony Stimulating Factor.

Smith H, Goodlett B, Navaneethabalakrishnan S, Mitchell B Cells. 2024; 13(15.

PMID: 39120331 PMC: 11311366. DOI: 10.3390/cells13151302.


Amplification of Salt-Sensitive Hypertension and Kidney Damage by Immune Mechanisms.

Mattson D, Dasinger J, Abais-Battad J Am J Hypertens. 2020; 34(1):3-14.

PMID: 32725162 PMC: 7891248. DOI: 10.1093/ajh/hpaa124.


Y Chromosome, Hypertension and Cardiovascular Disease: Is Inflammation the Answer?.

Khan S, Andrews K, Jennings G, Sampson A, Chin-Dusting J Int J Mol Sci. 2019; 20(12).

PMID: 31200567 PMC: 6627840. DOI: 10.3390/ijms20122892.


Immune mechanisms of salt-sensitive hypertension and renal end-organ damage.

Mattson D Nat Rev Nephrol. 2019; 15(5):290-300.

PMID: 30804523 DOI: 10.1038/s41581-019-0121-z.


References
1.
Weinberger M, Fineberg N . Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension. 1991; 18(1):67-71. DOI: 10.1161/01.hyp.18.1.67. View

2.
Cowley Jr A . Renal medullary oxidative stress, pressure-natriuresis, and hypertension. Hypertension. 2008; 52(5):777-86. PMC: 2659638. DOI: 10.1161/HYPERTENSIONAHA.107.092858. View

3.
Franco M, Martinez F, Quiroz Y, Galicia O, Bautista R, Johnson R . Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol. 2007; 293(1):R251-6. DOI: 10.1152/ajpregu.00645.2006. View

4.
Zewde T, Wu F, Mattson D . Influence of dietary NaCl on L-arginine transport in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2003; 286(1):R89-93. DOI: 10.1152/ajpregu.00309.2003. View

5.
Romero F, Rodriguez-Iturbe B, Parra G, Gonzalez L, Herrera-Acosta J, Tapia E . Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats. Kidney Int. 1999; 55(3):945-55. DOI: 10.1046/j.1523-1755.1999.055003945.x. View