» Articles » PMID: 20155797

Transcriptional Upregulation of Nitric Oxide Synthase II by Nuclear Factor-kappaB Promotes Apoptotic Neuronal Cell Death in the Hippocampus Following Experimental Status Epilepticus

Overview
Journal J Neurosci Res
Specialty Neurology
Date 2010 Feb 16
PMID 20155797
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Whereas status epilepticus, or the condition of continuous epileptic seizures, produces a characteristic pattern of preferential neuronal cell loss in the hippocampus, the underlying mechanism is still unsettled. Based on an experimental model of temporal lobe status epilepticus, we demonstrated previously that prolonged seizures prompted an overproduction of nitric oxide (NO) by upregulation of NO synthase II (NOS II) in the hippocampal CA3 subfield, followed by the activation of mitochondrial apoptotic signaling cascade. Using the same animal model, the present study evaluated the hypothesis that transcriptional upregulation of NOS II gene by nuclear factor-kappaB (NF-kappaB) promotes apoptotic neuronal cell death in the hippocampus following status epilepticus. In Sprague-Dawley rats, significantly augmented nucleus-bound translocation of NF-kappaB p50 and p65 subunits and DNA binding activity of NF-kappaB were observed in hippocampal CA3 neurons as early as 30 min after elicitation of sustained seizure activity by microinjection of kainic acid into the CA3 subfield, followed by a progressive elevation that peaked at 90 min. In addition, application bilaterally into the hippocampal CA3 subfield of a selective NF-kappaB inhibitor, pyrrolidine dithiocarbamate or double-stranded kappaB decoy DNA significantly antagonized the activated NOS II-peroxynitrite signaling cascade (3 hr) and the associated manifestations of apoptotic cell death (7 days) in the hippocampus. We conclude that activation of NF-kappaB in hippocampal CA3 neurons upregulates NOS II gene expression following experimental temporal lobe status epilepticus, leading to apoptotic neuronal cell death in the hippocampus.

Citing Articles

Epigallocatechin-3-Gallate Attenuates Leukocyte Infiltration in 67-kDa Laminin Receptor-Dependent and -Independent Pathways in the Rat Frontoparietal Cortex following Status Epilepticus.

Kim J, Lee D, Kang T Antioxidants (Basel). 2023; 12(4).

PMID: 37107345 PMC: 10136333. DOI: 10.3390/antiox12040969.


Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy.

Mardones M, Gupta K Int J Mol Sci. 2022; 23(19).

PMID: 36233336 PMC: 9569502. DOI: 10.3390/ijms231912030.


Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures.

Sun H, Li X, Guo Q, Liu S Neurol Sci. 2022; 43(11):6279-6298.

PMID: 35927358 DOI: 10.1007/s10072-022-06302-6.


Long non-coding RNA H19 alleviates hippocampal damage in convulsive status epilepticus rats through the nuclear factor-kappaB signaling pathway.

Xie Y, Wang M, Deng X, Chen Y Bioengineered. 2022; 13(5):12783-12793.

PMID: 35603469 PMC: 9275906. DOI: 10.1080/21655979.2022.2074760.


Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial?.

Lin T, Chen S, Lin K, Chuang Y Antioxidants (Basel). 2020; 9(11).

PMID: 33105652 PMC: 7690410. DOI: 10.3390/antiox9111029.