» Articles » PMID: 20148575

Nano-optofluidic Detection of Single Viruses and Nanoparticles

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2010 Feb 13
PMID 20148575
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The reliable detection, sizing, and sorting of viruses and nanoparticles is important for biosensing, environmental monitoring, and quality control. Here we introduce an optical detection scheme for the real-time and label-free detection and recognition of single viruses and larger proteins. The method makes use of nanofluidic channels in combination with optical interferometry. Elastically scattered light from single viruses traversing a stationary laser focus is detected with a differential heterodyne interferometer and the resulting signal allows single viruses to be characterized individually. Heterodyne detection eliminates phase variations due to different particle trajectories, thus improving the recognition accuracy as compared to standard optical interferometry. We demonstrate the practicality of our approach by resolving nanoparticles of various sizes, and detecting and recognizing different species of human viruses from a mixture. The detection system can be readily integrated into larger nanofluidic architectures for practical applications.

Citing Articles

Exploring Carbon Dots: Green Nanomaterials for Unconventional Lasing.

Minervini G, Panniello A, Dibenedetto C, Madonia A, Fanizza E, Curri M Small. 2024; 20(47):e2403653.

PMID: 39165080 PMC: 11579981. DOI: 10.1002/smll.202403653.


Will Technology Rather Than Vaccination Be the Way to Control Pandemics?.

Leptihn S, Welburn S Infect Microbes Dis. 2024; 2(4):125-126.

PMID: 38630072 PMC: 7769057. DOI: 10.1097/IM9.0000000000000041.


Viewing life without labels under optical microscopes.

Ghosh B, Agarwal K Commun Biol. 2023; 6(1):559.

PMID: 37231084 PMC: 10212946. DOI: 10.1038/s42003-023-04934-8.


Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles.

Spackova B, Klein Moberg H, Fritzsche J, Tenghamn J, Sjosten G, Sipova-Jungova H Nat Methods. 2022; 19(6):751-758.

PMID: 35637303 PMC: 9184284. DOI: 10.1038/s41592-022-01491-6.


Trench field-effect transistors integrated in a microfluidic channel and design considerations for charge detection.

Park D, Tsvid G, Hernandez-Ortiz J, Schwartz D, Ma Z Appl Phys Lett. 2022; 120(19):192102.

PMID: 35578730 PMC: 9107340. DOI: 10.1063/5.0084758.


References
1.
Yezhelyev M, Gao X, Xing Y, Al-Hajj A, Nie S, ORegan R . Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006; 7(8):657-67. DOI: 10.1016/S1470-2045(06)70793-8. View

2.
Takasaki T, Kurane I, Aihara H, Ohkawa N, Yamaguchi J . Electron microscopic study of human immunodeficiency virus type 1 (HIV-1) core structure: two RNA strands in the core of mature and budding particles. Arch Virol. 1997; 142(2):375-82. DOI: 10.1007/s007050050083. View

3.
Tang G, Yan D, Yang C, Gong H, Chai J, Lam Y . Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis. 2006; 27(3):628-39. DOI: 10.1002/elps.200500681. View

4.
Menon S, Hansen J, Nazarenko L, Luo Y . Climate effects of black carbon aerosols in China and India. Science. 2002; 297(5590):2250-3. DOI: 10.1126/science.1075159. View

5.
Ignatovich F, Novotny L . Real-time and background-free detection of nanoscale particles. Phys Rev Lett. 2006; 96(1):013901. DOI: 10.1103/PhysRevLett.96.013901. View