» Articles » PMID: 20146224

Laser Desorption Postionization for Imaging MS of Biological Material

Overview
Journal J Mass Spectrom
Publisher Wiley
Date 2010 Feb 11
PMID 20146224
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Vacuum ultraviolet single photon ionization (VUV SPI) is a soft ionization technique that has the potential to address many of the limitations of matrix-assisted laser desorption/ionization (MALDI) for imaging MS. Laser desorption postionization (LDPI) uses VUV SPI for postionization and is experimentally analogous to a MALDI instrument with the addition of a pulsed VUV light source. This review discusses progress in LDPI-MS over the last decade, with an emphasis on imaging MS of bacterial biofilms, analytes whose high salt environment make them particularly resistant to imaging by MALDI-MS. This review first considers fundamental aspects of VUV SPI including ionization mechanisms, cross sections, quantum yields of ionization, dissociation and potential mass limits. The most common sources of pulsed VUV radiation are then described along with a newly constructed LDPI-MS instrument with imaging capabilities. Next, the detection and imaging of small molecules within intact biofilms is demonstrated by LDPI-MS using 7.87 eV (157.6 nm) VUV photons from a molecular fluorine excimer laser, followed by the use of aromatic tags for detection of selected species within the biofilm. The final section considers the future prospects for imaging intact biological samples by LDPI-MS.

Citing Articles

Next Generation of Mass Spectrometry Imaging: from Micrometer to Subcellular Resolution.

Xing L, Zhao C, Mou H, Pan J, Kang B, Chen H Chem Biomed Imaging. 2024; 1(8):670-682.

PMID: 39474305 PMC: 11504503. DOI: 10.1021/cbmi.3c00061.


Mass Spectral Imaging to Map Plant-Microbe Interactions.

Parker G, Hanley L, Yu X Microorganisms. 2023; 11(8).

PMID: 37630605 PMC: 10459445. DOI: 10.3390/microorganisms11082045.


IR-MALDI Mass Spectrometry Imaging with Plasma Post-Ionization of Nonpolar Metabolites.

Schneemann J, Schafer K, Spengler B, Heiles S Anal Chem. 2022; 94(46):16086-16094.

PMID: 36355437 PMC: 9685590. DOI: 10.1021/acs.analchem.2c03247.


New avenues for matter-wave-enhanced spectroscopy.

Rodewald J, Haslinger P, Dorre N, Stickler B, Shayeghi A, Hornberger K Appl Phys B. 2016; 123(1):3.

PMID: 28018052 PMC: 5148790. DOI: 10.1007/s00340-016-6573-y.


ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

Cui Y, Hanley L Rev Sci Instrum. 2015; 86(6):065106.

PMID: 26133872 PMC: 4482810. DOI: 10.1063/1.4922913.


References
1.
Muhlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R . Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath. Anal Chem. 2005; 77(22):7408-14. DOI: 10.1021/ac051194+. View

2.
Pan Y, Zhang L, Zhang T, Guo H, Hong X, Qi F . Photoionization studies on various quinones by an infrared laser desorption/tunable VUV photoionization TOF mass spectrometry. J Mass Spectrom. 2008; 43(12):1701-10. DOI: 10.1002/jms.1465. View

3.
Syage J . Mechanism of [M + H]+ formation in photoionization mass spectrometry. J Am Soc Mass Spectrom. 2004; 15(11):1521-33. DOI: 10.1016/j.jasms.2004.07.006. View

4.
Ogony J, Mare S, Wu W, Ercal N . High performance liquid chromatography analysis of 2-mercaptoethylamine (cysteamine) in biological samples by derivatization with N-(1-pyrenyl) maleimide (NPM) using fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 843(1):57-62. DOI: 10.1016/j.jchromb.2006.05.027. View

5.
Kriegeskotte C, Cantz T, Haberland J, Zibert A, Haier J, Kohler G . Laser secondary neutral mass spectrometry for copper detection in micro-scale biopsies. J Mass Spectrom. 2009; 44(10):1417-22. DOI: 10.1002/jms.1634. View