» Articles » PMID: 20126261

PINK1 is Selectively Stabilized on Impaired Mitochondria to Activate Parkin

Overview
Journal PLoS Biol
Specialty Biology
Date 2010 Feb 4
PMID 20126261
Citations 1494
Authors
Affiliations
Soon will be listed here.
Abstract

Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination.

Citing Articles

Studying Cellular Senescence Using the Model Organism Drosophila melanogaster.

Louka X, Gumeni S, Trougakos I Methods Mol Biol. 2025; 2906:281-299.

PMID: 40082363 DOI: 10.1007/978-1-0716-4426-3_17.


A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy.

Tang M, Rong D, Gao X, Lu G, Tang H, Wang P Cell Discov. 2025; 11(1):22.

PMID: 40064862 PMC: 11894195. DOI: 10.1038/s41421-025-00774-4.


Nicotinamide mononucleotide combined with PJ-34 protects microglial cells from lipopolysaccharide-induced mitochondrial impairment through NMNAT3-PARP1 axis.

Li J, Cheng X, Ma R, Zou B, Zhang Y, Wu M J Transl Med. 2025; 23(1):279.

PMID: 40050860 PMC: 11884077. DOI: 10.1186/s12967-025-06280-1.


Deubiquitinating Enzymes Regulate Skeletal Muscle Mitochondrial Quality Control and Insulin Sensitivity in Patients With Type 2 Diabetes.

Dantas W, Heintz E, Zunica E, Mey J, Erickson M, Belmont K J Cachexia Sarcopenia Muscle. 2025; 16(2):e13763.

PMID: 40035128 PMC: 11876994. DOI: 10.1002/jcsm.13763.


Novel reporter of the PINK1-Parkin mitophagy pathway identifies its damage sensor in the import gate.

Thayer J, Petersen J, Huang X, Hawrot J, Ramos D, Sekine S bioRxiv. 2025; .

PMID: 40027798 PMC: 11870511. DOI: 10.1101/2025.02.19.639160.


References
1.
Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang J . Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A. 2006; 103(28):10793-8. PMC: 1502310. DOI: 10.1073/pnas.0602493103. View

2.
Rossmeisl M, Barbatelli G, Flachs P, Brauner P, Zingaretti M, Marelli M . Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. Eur J Biochem. 2002; 269(1):19-28. DOI: 10.1046/j.0014-2956.2002.02627.x. View

3.
Schapira A . Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2007; 7(1):97-109. DOI: 10.1016/S1474-4422(07)70327-7. View

4.
Kundu M, Lindsten T, Yang C, Wu J, Zhao F, Zhang J . Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008; 112(4):1493-502. PMC: 2515143. DOI: 10.1182/blood-2008-02-137398. View

5.
Palacino J, Sagi D, Goldberg M, Krauss S, Motz C, Wacker M . Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004; 279(18):18614-22. DOI: 10.1074/jbc.M401135200. View