Pandey A, Meitei H, Konjengbam B, Rahaman H, Haobam R
Biochem Genet. 2025; .
PMID: 39776372
DOI: 10.1007/s10528-024-11015-w.
Guallar-Garrido S, Soldati T
Dis Model Mech. 2024; 17(7).
PMID: 39037280
PMC: 11552500.
DOI: 10.1242/dmm.050698.
Manjunath P, Ahmad J, Samal J, Rani A, Sheikh J, Zarin S
Front Microbiol. 2024; 15:1344857.
PMID: 38803374
PMC: 11129820.
DOI: 10.3389/fmicb.2024.1344857.
Dawi J, Mohan A, Misakyan Y, Affa S, Gonzalez E, Hajjar K
Diseases. 2024; 12(3).
PMID: 38534973
PMC: 10969146.
DOI: 10.3390/diseases12030050.
Chaubey G, Modanwal R, Dilawari R, Talukdar S, Dhiman A, Chaudhary S
Immunol Res. 2024; 72(4):644-653.
PMID: 38347341
DOI: 10.1007/s12026-024-09462-z.
A highly sensitive and specific luminescent MOF determines nitric oxide production and quantifies hydrogen sulfide-mediated inhibition of nitric oxide in living cells.
Kumar A, Negi S, Choudhury T, Mutreja V, Sunaina S, Sahoo S
Mikrochim Acta. 2023; 190(4):127.
PMID: 36897440
DOI: 10.1007/s00604-023-05660-y.
Imaging characteristics of pulmonary BCG/TB infection in patients with chronic granulomatous disease.
Yao Q, Zhou Q, Shen Q, Wang X, Hu X
Sci Rep. 2022; 12(1):11765.
PMID: 35817807
PMC: 9273607.
DOI: 10.1038/s41598-022-16021-9.
Proteome Profiling of Cells Exposed to Nitrosative Stress.
Birhanu A, Gomez-Munoz M, Kalayou S, Riaz T, Lutter T, Yimer S
ACS Omega. 2022; 7(4):3470-3482.
PMID: 35128256
PMC: 8811941.
DOI: 10.1021/acsomega.1c05923.
A Dual Marker for Monitoring MDR-TB Treatment: Host-Derived miRNAs and -Derived RNA Sequences in Serum.
Carranza C, Herrera M, Guzman-Beltran S, Salgado-Cantu M, Salido-Guadarrama I, Santiago E
Front Immunol. 2021; 12:760468.
PMID: 34804048
PMC: 8600136.
DOI: 10.3389/fimmu.2021.760468.
Host-directed therapy to combat mycobacterial infections.
Kilinc G, Saris A, Ottenhoff T, Haks M
Immunol Rev. 2021; 301(1):62-83.
PMID: 33565103
PMC: 8248113.
DOI: 10.1111/imr.12951.
Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Infection in Mouse Macrophages.
Lee H, Hong W, Woo Y, Ahn J, Ko H, Kim H
Mol Cells. 2020; 43(12):989-1001.
PMID: 33250450
PMC: 7772511.
DOI: 10.14348/molcells.2020.0030.
European Respiratory Society International Congress, Madrid, 2019: nontuberculous mycobacterial pulmonary disease highlights.
Chalmers J, Balavoine C, Castellotti P, Hugel C, Payet A, Wat D
ERJ Open Res. 2020; 6(4).
PMID: 33123559
PMC: 7569164.
DOI: 10.1183/23120541.00317-2020.
Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to Mycobacterium tuberculosis.
Jain N, Kalam H, Singh L, Sharma V, Kedia S, Das P
Nat Commun. 2020; 11(1):3062.
PMID: 32546788
PMC: 7297998.
DOI: 10.1038/s41467-020-16877-3.
Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis.
Pahari S, Kaur G, Negi S, Aqdas M, Das D, Bashir H
Front Immunol. 2018; 9:193.
PMID: 29479353
PMC: 5811511.
DOI: 10.3389/fimmu.2018.00193.
Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production.
Lee J, Lee M, Kim D, Yang S, Lee S, Noh E
Front Immunol. 2017; 8:1477.
PMID: 29163541
PMC: 5681718.
DOI: 10.3389/fimmu.2017.01477.
Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells.
Gharun K, Senges J, Seidl M, Losslein A, Kolter J, Lohrmann F
EMBO Rep. 2017; 18(12):2144-2159.
PMID: 29097394
PMC: 5709734.
DOI: 10.15252/embr.201744121.
Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis.
Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M
Front Microbiol. 2017; 8:2008.
PMID: 29085351
PMC: 5649180.
DOI: 10.3389/fmicb.2017.02008.
Nitric Oxide Modulates Macrophage Responses to Infection through Activation of HIF-1α and Repression of NF-κB.
Braverman J, Stanley S
J Immunol. 2017; 199(5):1805-1816.
PMID: 28754681
PMC: 5568107.
DOI: 10.4049/jimmunol.1700515.
Mycobacterial Dormancy Systems and Host Responses in Tuberculosis.
Peddireddy V, Doddam S, Ahmed N
Front Immunol. 2017; 8:84.
PMID: 28261197
PMC: 5309233.
DOI: 10.3389/fimmu.2017.00084.
The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays.
Tanner R, OShea M, White A, Muller J, Harrington-Kandt R, Matsumiya M
Sci Rep. 2017; 7:43478.
PMID: 28256545
PMC: 5335253.
DOI: 10.1038/srep43478.