» Articles » PMID: 20100357

FiGS: a Filter-based Gene Selection Workbench for Microarray Data

Overview
Publisher Biomed Central
Specialty Biology
Date 2010 Jan 27
PMID 20100357
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset.

Results: FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at http://gexp.kaist.ac.kr/figs.

Conclusion: FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.

Citing Articles

A hybrid double-density dual-tree discrete wavelet transformation and marginal Fisher analysis for scoring sleep stages from unprocessed single-channel electroencephalogram.

Liu Y, Gao J, Cao W, Wei L, Mao Y, Liu W Quant Imaging Med Surg. 2020; 10(3):766-778.

PMID: 32269935 PMC: 7136739. DOI: 10.21037/qims.2020.02.01.


Unbiased bootstrap error estimation for linear discriminant analysis.

Vu T, Sima C, Braga-Neto U, Dougherty E EURASIP J Bioinform Syst Biol. 2017; 2014:15.

PMID: 28194165 PMC: 5270504. DOI: 10.1186/s13637-014-0015-0.


Discovering gene expression signatures responding to tyrosine kinase inhibitor treatment in chronic myeloid leukemia.

Cha K, Li Y, Yi G BMC Med Genomics. 2016; 9 Suppl 1:29.

PMID: 27534394 PMC: 4989900. DOI: 10.1186/s12920-016-0194-5.


Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data.

Cha K, Taeho Hwang , Oh K, Yi G BMC Med Inform Decis Mak. 2015; 15 Suppl 1:S7.

PMID: 26043779 PMC: 4460778. DOI: 10.1186/1472-6947-15-S1-S7.


geneCommittee: a web-based tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification.

Reboiro-Jato M, Arrais J, Oliveira J, Fdez-Riverola F BMC Bioinformatics. 2014; 15:31.

PMID: 24475928 PMC: 3909759. DOI: 10.1186/1471-2105-15-31.


References
1.
Inza I, Larranaga P, Blanco R, Cerrolaza A . Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med. 2004; 31(2):91-103. DOI: 10.1016/j.artmed.2004.01.007. View

2.
Singh D, Febbo P, Ross K, Jackson D, Manola J, Ladd C . Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002; 1(2):203-9. DOI: 10.1016/s1535-6108(02)00030-2. View

3.
Medina I, Montaner D, Tarraga J, Dopazo J . Prophet, a web-based tool for class prediction using microarray data. Bioinformatics. 2006; 23(3):390-1. DOI: 10.1093/bioinformatics/btl602. View

4.
Pochet N, Janssens F, De Smet F, Marchal K, Suykens J, De Moor B . M@CBETH: a microarray classification benchmarking tool. Bioinformatics. 2005; 21(14):3185-6. DOI: 10.1093/bioinformatics/bti495. View

5.
Statnikov A, Wang L, Aliferis C . A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics. 2008; 9:319. PMC: 2492881. DOI: 10.1186/1471-2105-9-319. View