» Articles » PMID: 20092291

Electron Spin-echo Envelope Modulation (ESEEM) Reveals Water and Phosphate Interactions with the KcsA Potassium Channel

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2010 Jan 23
PMID 20092291
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

Citing Articles

HDX-guided EPR spectroscopy to interrogate membrane protein dynamics.

Lane B, Wang B, Ma Y, Calabrese A, El Mkami H, Pliotas C STAR Protoc. 2022; 3(3):101562.

PMID: 35874470 PMC: 9304679. DOI: 10.1016/j.xpro.2022.101562.


Pocket delipidation induced by membrane tension or modification leads to a structurally analogous mechanosensitive channel state.

Wang B, Lane B, Kapsalis C, Ault J, Sobott F, El Mkami H Structure. 2022; 30(4):608-622.e5.

PMID: 34986323 PMC: 9033278. DOI: 10.1016/j.str.2021.12.004.


In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity.

Kapsalis C, Ma Y, Bode B, Pliotas C Biophys J. 2020; 119(2):448-459.

PMID: 32621864 PMC: 7376121. DOI: 10.1016/j.bpj.2020.06.012.


Electron Spin Relaxation of Photoexcited Porphyrin in Water-Glycerol Glass.

Sannikova N, Timofeev I, Bagryanskaya E, Bowman M, Fedin M, Krumkacheva O Molecules. 2020; 25(11).

PMID: 32527023 PMC: 7321249. DOI: 10.3390/molecules25112677.


Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins.

Sahu I, Lorigan G Biomolecules. 2020; 10(5).

PMID: 32414134 PMC: 7278021. DOI: 10.3390/biom10050763.


References
1.
Marsh D, Kurad D, Livshits V . High-field electron spin resonance of spin labels in membranes. Chem Phys Lipids. 2002; 116(1-2):93-114. DOI: 10.1016/s0009-3084(02)00022-1. View

2.
Bartucci R, Guzzi R, Marsh D, Sportelli L . Intramembrane polarity by electron spin echo spectroscopy of labeled lipids. Biophys J. 2003; 84(2 Pt 1):1025-30. PMC: 1302679. DOI: 10.1016/S0006-3495(03)74918-2. View

3.
Altenbach C, Froncisz W, Hemker R, Mchaourab H, Hubbell W . Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J. 2005; 89(3):2103-12. PMC: 1366712. DOI: 10.1529/biophysj.105.059063. View

4.
Marsh D, Toniolo C . Polarity dependence of EPR parameters for TOAC and MTSSL spin labels: correlation with DOXYL spin labels for membrane studies. J Magn Reson. 2007; 190(2):211-21. DOI: 10.1016/j.jmr.2007.11.005. View

5.
Gordon-Grossman M, Gofman Y, Zimmermann H, Frydman V, Shai Y, Ben-Tal N . A combined pulse EPR and Monte Carlo simulation study provides molecular insight on peptide-membrane interactions. J Phys Chem B. 2009; 113(38):12687-95. DOI: 10.1021/jp905129b. View