» Articles » PMID: 20091874

Self-assembly of Peptide Amphiphiles: from Molecules to Nanostructures to Biomaterials

Overview
Journal Biopolymers
Publisher Wiley
Date 2010 Jan 22
PMID 20091874
Citations 361
Authors
Affiliations
Soon will be listed here.
Abstract

Peptide amphiphiles are a class of molecules that combine the structural features of amphiphilic surfactants with the functions of bioactive peptides and are known to assemble into a variety of nanostructures. A specific type of peptide amphiphiles are known to self-assemble into one-dimensional nanostructures under physiological conditions, predominantly nanofibers with a cylindrical geometry. The resultant nanostructures could be highly bioactive and are of great interest in many biomedical applications, including tissue engineering, regenerative medicine, and drug delivery. In this context, we highlight our strategies for using molecular self-assembly as a toolbox to produce peptide amphiphile nanostructures and materials and efforts to translate this technology into applications as therapeutics. We also review our recent progress in using these materials for treating spinal cord injury, inducing angiogenesis, and for hard tissue regeneration and replacement.

Citing Articles

Micellization of Lipopeptides Containing Toll-like Receptor Agonist and Integrin Binding Sequences.

Castelletto V, de Mello L, Seitsonen J, Hamley I ACS Appl Mater Interfaces. 2024; 16(50):68713-68723.

PMID: 39651938 PMC: 11660038. DOI: 10.1021/acsami.4c18165.


Interaction of Arginine-Rich Surfactant-like Peptide Nanotubes with Liposomes.

Castelletto V, Seitsonen J, de Mello L, Hamley I Biomacromolecules. 2024; 25(11):7410-7420.

PMID: 39469728 PMC: 11558666. DOI: 10.1021/acs.biomac.4c01072.


Engineering supramolecular peptide nanofibers for in vivo platelet-hitchhiking beyond ligand-receptor recognition.

Feng Y, Liu C, Cui W, Yang L, Wu D, Zhang H Sci Adv. 2024; 10(43):eadq2072.

PMID: 39441939 PMC: 11498226. DOI: 10.1126/sciadv.adq2072.


Hydrogels with Independently Controlled Adhesion Ligand Mobility and Viscoelasticity Increase Cell Adhesion and Spreading.

Moghaddam A, Dunne K, Breyer W, Wu Y, Pashuck E bioRxiv. 2024; .

PMID: 39386463 PMC: 11463488. DOI: 10.1101/2024.09.23.614501.


Recent advances of 3D-printing in spine surgery.

Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim S Surg Neurol Int. 2024; 15:297.

PMID: 39246777 PMC: 11380890. DOI: 10.25259/SNI_460_2024.


References
1.
Zaidel-Bar R, Cohen M, Addadi L, Geiger B . Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans. 2004; 32(Pt3):416-20. DOI: 10.1042/BST0320416. View

2.
Rajangam K, Behanna H, Hui M, Han X, Hulvat J, Lomasney J . Heparin binding nanostructures to promote growth of blood vessels. Nano Lett. 2006; 6(9):2086-90. DOI: 10.1021/nl0613555. View

3.
Guler M, Hsu L, Soukasene S, Harrington D, Hulvat J, Stupp S . Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles. Biomacromolecules. 2006; 7(6):1855-63. PMC: 2547993. DOI: 10.1021/bm060161g. View

4.
Sephel G, Tashiro K, Sasaki M, Greatorex D, Martin G, Yamada Y . Laminin A chain synthetic peptide which supports neurite outgrowth. Biochem Biophys Res Commun. 1989; 162(2):821-9. DOI: 10.1016/0006-291x(89)92384-x. View

5.
Rajangam K, Arnold M, Rocco M, Stupp S . Peptide amphiphile nanostructure-heparin interactions and their relationship to bioactivity. Biomaterials. 2008; 29(23):3298-305. PMC: 2526463. DOI: 10.1016/j.biomaterials.2008.04.008. View