» Articles » PMID: 20091503

Treatment of Latent Tuberculosis Infection in HIV Infected Persons

Overview
Publisher Wiley
Date 2010 Jan 22
PMID 20091503
Citations 262
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Individuals with human immunodeficiency virus (HIV) infection are at an increased risk of developing active tuberculosis (TB). It is known that treatment of latent TB infection (LTBI), also referred to as TB preventive therapy or chemoprophylaxis, helps to prevent progression to active disease in HIV negative populations. However, the extent and magnitude of protection (if any) associated with preventive therapy in those infected with HIV should be quantified. This present study is an update of the original review.

Objectives: To determine the effectiveness of TB preventive therapy in reducing the risk of active tuberculosis and death in HIV-infected persons.

Search Strategy: This review was updated using the Cochrane Controlled Trials Register (CCTR), MEDLINE, EMBASE, AIDSLINE, AIDSTRIALS, AIDSearch, NLM Gateway and AIDSDRUGS (publication date from 01 July 2002 to 04 April 2008). We also scanned reference lists of articles and contacted authors and other researchers in the field in an attempt to identify additional studies that may be eligible for inclusion in this review.

Selection Criteria: We included randomized controlled trials in which HIV positive individuals were randomly allocated to TB preventive therapy or placebo, or to alternative TB preventive therapy regimens. Participants could be tuberculin skin test positive or negative, but without active tuberculosis.

Data Collection And Analysis: Three reviewers independently applied the study selection criteria, assessed study quality and extracted data. Effects were assessed using relative risk for dichotomous data and mean differences for continuous data.

Main Results: 12 trials were included with a total of 8578 randomized participants. TB preventive therapy (any anti-TB drug) versus placebo was associated with a lower incidence of active TB (RR 0.68, 95% CI 0.54 to 0.85). This benefit was more pronounced in individuals with a positive tuberculin skin test (RR 0.38, 95% CI 0.25 to 0.57) than in those who had a negative test (RR 0.89, 95% CI 0.64 to 1.24). Efficacy was similar for all regimens (regardless of drug type, frequency or duration of treatment). However, compared to INH monotherapy, short-course multi-drug regimens were much more likely to require discontinuation of treatment due to adverse effects. Although there was reduction in mortality with INH monotherapy versus placebo among individuals with a positive tuberculin skin test (RR 0.74, 95% CI 0.55 to 1.00) and with INH plus rifampicin versus placebo regardless of tuberculin skin test status (RR 0.69, 95% CI 0.50 to 0.95), overall, there was no evidence that TB preventive therapy versus placebo reduced all-cause mortality (RR 0.94, 95% CI 0.85 to 1.05).

Authors' Conclusions: Treatment of latent tuberculosis infection reduces the risk of active TB in HIV positive individuals especially in those with a positive tuberculin skin test. The choice of regimen will depend on factors such as availability, cost, adverse effects, adherence and drug resistance. Future studies should assess these aspects. In addition, trials evaluating the long-term effects of anti-tuberculosis chemoprophylaxis, the optimal duration of TB preventive therapy, the influence of level of immunocompromise on effectiveness and combination of anti-tuberculosis chemoprophylaxis with antiretroviral therapy are needed.

Citing Articles

Choice-architecture TB preventive therapy prescribing for HIV patients in Mozambique.

Salles I, Munguambe S, Chiau R, Valverde E, Golub J, Hoffmann C Public Health Action. 2025; 15(1):21-25.

PMID: 40028639 PMC: 11841113. DOI: 10.5588/pha.24.0033.


Tuberculosis Preventive Treatment in High TB-Burden Settings: A State-of-the-Art Review.

Chihota V, Gombe M, Gupta A, Salazar-Austin N, Ryckman T, Hoffmann C Drugs. 2024; 85(2):127-147.

PMID: 39733063 PMC: 11802714. DOI: 10.1007/s40265-024-02131-3.


6-month regimen of isoniazid prevention therapy for tuberculosis among people living with human immunodeficiency virus in minority areas of China: a 3-year prospective cohort study.

Li J, He J, Li T, Li Y, Gao W, Zhong Y BMJ Open Respir Res. 2024; 11(1.

PMID: 39721747 PMC: 11683910. DOI: 10.1136/bmjresp-2024-002801.


Case studies of health economic analyses informing pharmaceutical health technology assessments for essential medicine selection and public-sector guidelines in South Africa.

Leong T, Miot J, Parrish A, Riddin J, Johnson Y, Kredo T Int J Technol Assess Health Care. 2024; 40(1):e76.

PMID: 39663916 PMC: 11703611. DOI: 10.1017/S0266462324000448.


The potential impact of new tuberculosis vaccines on the burden of tuberculosis in people with HIV in South Africa.

Sumner T, Clark R, Prys-Jones T, Bakker R, Churchyard G, White R AIDS. 2024; 39(2):175-183.

PMID: 39411889 PMC: 11676631. DOI: 10.1097/QAD.0000000000004038.


References
1.
Selwyn P, Hartel D, Lewis V, Schoenbaum E, Vermund S, Klein R . A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med. 1989; 320(9):545-50. DOI: 10.1056/NEJM198903023200901. View

2.
Gordin F, Matts J, Miller C, Brown L, Hafner R, John S . A controlled trial of isoniazid in persons with anergy and human immunodeficiency virus infection who are at high risk for tuberculosis. Terry Beirn Community Programs for Clinical Research on AIDS. N Engl J Med. 1997; 337(5):315-20. DOI: 10.1056/NEJM199707313370505. View

3.
Akileswaran C, Lurie M, Flanigan T, Mayer K . Lessons learned from use of highly active antiretroviral therapy in Africa. Clin Infect Dis. 2005; 41(3):376-85. DOI: 10.1086/431482. View

4.
Martinez Alfaro E, Cuadra F, Solera J, Macia M, Geijo P, Sanchez Martinez P . [Evaluation of 2 tuberculosis chemoprophylaxis regimens in patients infected with human immunodeficiency virus. The GECMEI Group]. Med Clin (Barc). 2000; 115(5):161-5. DOI: 10.1016/s0025-7753(00)71496-5. View

5.
McShane H . Co-infection with HIV and TB: double trouble. Int J STD AIDS. 2005; 16(2):95-100. DOI: 10.1258/0956462053057576. View