» Articles » PMID: 20086052

Whole Mount in Situ Hybridization Detection of MRNAs Using Short LNA Containing DNA Oligonucleotide Probes

Overview
Journal RNA
Specialty Molecular Biology
Date 2010 Jan 21
PMID 20086052
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

In situ hybridization is widely used to visualize transcribed sequences in embryos, tissues, and cells. For whole mount detection of mRNAs in embryos, hybridization with an antisense RNA probe is followed by visual or fluorescence detection of target mRNAs. A limitation of this approach is that a cDNA template of the target RNA must be obtained in order to generate the antisense RNA probe. Here we investigate the use of short (12-24 nucleotides) locked nucleic acid (LNA) containing DNA probes for whole mount in situ hybridization detection of mRNAs. Following extensive protocol optimization, we show that LNA probes can be used to localize several mRNAs of varying abundances in chicken embryos. LNA probes also detected alternatively spliced exons that are processed in a tissue specific manner. The use of LNA probes for whole mount in situ detection of mRNAs will enable in silico design and chemical synthesis and will expand the general use of in situ hybridization for studies of transcriptional regulation and alternative splicing.

Citing Articles

Diacylglycerol kinase γ facilitates the proliferation and migration of neural stem cells in the developing neural tube.

Cui H, Du J, Xie J, Zhang J, Tao Y, Huang Y Acta Biochim Biophys Sin (Shanghai). 2024; 57(2):250-260.

PMID: 39463203 PMC: 11868927. DOI: 10.3724/abbs.2024156.


Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions.

Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L Front Cell Dev Biol. 2022; 10:866820.

PMID: 35356276 PMC: 8959342. DOI: 10.3389/fcell.2022.866820.


Small RNA In Situ Hybridizations on Sections of Arabidopsis Embryos.

Paldi K, Mosiolek M, Nodine M Methods Mol Biol. 2020; 2122:87-99.

PMID: 31975297 PMC: 7116147. DOI: 10.1007/978-1-0716-0342-0_7.


Identification and Expression of Neurotrophin-6 in the Brain of Nothobranchius furzeri: One More Piece in Neurotrophin Research.

Leggieri A, Attanasio C, Palladino A, Cellerino A, Lucini C, Paolucci M J Clin Med. 2019; 8(5).

PMID: 31052296 PMC: 6571927. DOI: 10.3390/jcm8050595.


PICS: a platform for planar imaging of curved surfaces of brain and other tissue.

Scoggin J, Kemp B, Rivera D, Murray T Brain Struct Funct. 2019; 224(5):1947-1956.

PMID: 30903358 PMC: 6565470. DOI: 10.1007/s00429-019-01861-5.


References
1.
Wienholds E, Kloosterman W, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E . MicroRNA expression in zebrafish embryonic development. Science. 2005; 309(5732):310-1. DOI: 10.1126/science.1114519. View

2.
Silahtaroglu A, Nolting D, Dyrskjot L, Berezikov E, Moller M, Tommerup N . Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc. 2007; 2(10):2520-8. DOI: 10.1038/nprot.2007.313. View

3.
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen J . Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007; 35(Web Server issue):W71-4. PMC: 1933133. DOI: 10.1093/nar/gkm306. View

4.
Obernosterer G, Martinez J, Alenius M . Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc. 2007; 2(6):1508-14. DOI: 10.1038/nprot.2007.153. View

5.
Darnell D, Kaur S, Stanislaw S, Konieczka J, Konieczka J, Yatskievych T . MicroRNA expression during chick embryo development. Dev Dyn. 2006; 235(11):3156-65. DOI: 10.1002/dvdy.20956. View