» Articles » PMID: 20080592

A Mouse Model of Osteochondromagenesis from Clonal Inactivation of Ext1 in Chondrocytes

Overview
Specialty Science
Date 2010 Jan 19
PMID 20080592
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

We report a mouse model of multiple osteochondromas (MO), an autosomal dominant disease in humans, also known as multiple hereditary exostoses (MHE or HME) and characterized by the formation of cartilage-capped osseous growths projecting from the metaphyses of endochondral bones. The pathogenesis of these osteochondromas has remained unclear. Mice heterozygous for Ext1 or Ext2, modeling the human genotypes that cause MO, occasionally develop solitary osteochondroma-like structures on ribs [Lin et al. (2000) Dev Biol 224(2):299-311; Stickens et al. (2005) Development 132(22):5055-5068]. Rather than model the germ-line genotype, we modeled the chimeric tissue genotype of somatic loss of heterozygosity (LOH), by conditionally inactivating Ext1 via head-to-head loxP sites and temporally controlled Cre-recombinase in chondrocytes. These mice faithfully recapitulate the human phenotype of multiple metaphyseal osteochondromas. We also confirm homozygous disruption of Ext1 in osteochondroma chondrocytes and their origin in proliferating physeal chondrocytes. These results explain prior modeling failures with the necessity for somatic LOH in a developmentally regulated cell type.

Citing Articles

Analysis of the Actions of RARγ Agonists on Growing Osteochondromas in a Mouse Model.

Garcia S, Wilson K, Tang N, Tian H, Oichi T, Gunawardena A Int J Mol Sci. 2024; 25(14).

PMID: 39062860 PMC: 11277217. DOI: 10.3390/ijms25147610.


NFATC1 and NFATC2 expression patterns in human osteochondromas.

Wang Y, Ren J, Hou G, Ge X Heliyon. 2023; 9(1):e13018.

PMID: 36747924 PMC: 9898645. DOI: 10.1016/j.heliyon.2023.e13018.


Role of nuclear factor of activated T cells in chondrogenesis osteogenesis and osteochondroma formation.

Canalis E, Schilling L, Eller T, Yu J J Endocrinol Invest. 2022; 45(8):1507-1520.

PMID: 35352320 PMC: 10024159. DOI: 10.1007/s40618-022-01781-y.


Physiology and Pathophysiology of Heparan Sulfate in Animal Models: Its Biosynthesis and Degradation.

Mashima R, Okuyama T, Ohira M Int J Mol Sci. 2022; 23(4).

PMID: 35216081 PMC: 8876164. DOI: 10.3390/ijms23041963.


Genetic and functional analyses detect an EXT1 splicing pathogenic variant in a Chinese hereditary multiple exostosis (HME) family.

Li J, Wang Z, Han Y, Jin C, Cheng D, Zhou Y Mol Genet Genomic Med. 2022; 10(3):e1878.

PMID: 35106951 PMC: 8922959. DOI: 10.1002/mgg3.1878.


References
1.
Hameetman L, Szuhai K, Yavas A, Knijnenburg J, van Duin M, van Dekken H . The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst. 2007; 99(5):396-406. DOI: 10.1093/jnci/djk067. View

2.
Gregoire D, Kmita M . Recombination between inverted loxP sites is cytotoxic for proliferating cells and provides a simple tool for conditional cell ablation. Proc Natl Acad Sci U S A. 2008; 105(38):14492-6. PMC: 2567143. DOI: 10.1073/pnas.0807484105. View

3.
Lin X, Wei G, Shi Z, Dryer L, Esko J, Wells D . Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol. 2000; 224(2):299-311. DOI: 10.1006/dbio.2000.9798. View

4.
Porter D, Simpson A . The neoplastic pathogenesis of solitary and multiple osteochondromas. J Pathol. 1999; 188(2):119-25. DOI: 10.1002/(SICI)1096-9896(199906)188:2<119::AID-PATH321>3.0.CO;2-N. View

5.
Kohno K, Martin G, Yamada Y . Isolation and characterization of a cDNA clone for the amino-terminal portion of the pro-alpha 1(II) chain of cartilage collagen. J Biol Chem. 1984; 259(22):13668-73. View