» Articles » PMID: 20066483

Purification of Structurally Intact Grana from Plants Thylakoids Membranes

Overview
Publisher Springer
Date 2010 Jan 13
PMID 20066483
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Thylakoid membranes in higher plant chloroplasts are composed by two distinct domains: stacked grana and stroma lamellae. We developed a procedure for biochemical isolation of grana membranes using mild detergent to maintain membrane structure. Pigment and polypeptide analyses of membrane preparation showed the preparations were indeed enriched in grana membranes. The method was shown to be effective in four different plant species, although with small changes in detergent concentration. Electron microscopy analyses also showed that the preparation consisted of large membrane patches with roughly round shape and diameter comparable with grana membranes in vivo. Furthermore, protein complexes distribution was shown to be maintained with respect to freeze fracture studies, demonstrating that the protocol was successful in isolating membranes close to their in vivo state.

Citing Articles

Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions.

Dlouhy O, Karlicky V, Arshad R, Zsiros O, Domonkos I, Kurasova I Cells. 2021; 10(9).

PMID: 34572012 PMC: 8472583. DOI: 10.3390/cells10092363.


Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana.

Dikaios I, Schiphorst C, DallOsto L, Alboresi A, Bassi R, Pinnola A Photosynth Res. 2019; 142(3):249-264.

PMID: 31270669 PMC: 6874524. DOI: 10.1007/s11120-019-00656-3.


Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens.

Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S, Reich Z Plant Cell. 2015; 27(11):3213-27.

PMID: 26508763 PMC: 4682295. DOI: 10.1105/tpc.15.00443.


Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp.

Pinnola A, Ghin L, Gecchele E, Merlin M, Alboresi A, Avesani L J Biol Chem. 2015; 290(40):24340-54.

PMID: 26260788 PMC: 4591818. DOI: 10.1074/jbc.M115.668798.


The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes.

Phuthong W, Huang Z, Wittkopp T, Sznee K, Heinnickel M, Dekker J Plant Physiol. 2015; 169(2):1318-32.

PMID: 26220954 PMC: 4587457. DOI: 10.1104/pp.15.00706.


References
1.
Ballottari M, Govoni C, Caffarri S, Morosinotto T . Stoichiometry of LHCI antenna polypeptides and characterization of gap and linker pigments in higher plants Photosystem I. Eur J Biochem. 2004; 271(23-24):4659-65. DOI: 10.1111/j.1432-1033.2004.04426.x. View

2.
van Roon H, van Breemen J, de Weerd F, Dekker J, Boekema E . Solubilization of green plant thylakoid membranes with n-dodecyl-alpha,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6 f complexes. Photosynth Res. 2005; 64(2-3):155-66. DOI: 10.1023/A:1006476213540. View

3.
Nelson N, Ben-Shem A . The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol. 2004; 5(12):971-82. DOI: 10.1038/nrm1525. View

4.
Betterle N, Ballottari M, Zorzan S, De Bianchi S, Cazzaniga S, DallOsto L . Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem. 2009; 284(22):15255-66. PMC: 2685706. DOI: 10.1074/jbc.M808625200. View

5.
Gilmore A, Yamamoto H . Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport. Plant Physiol. 1991; 96(2):635-43. PMC: 1080818. DOI: 10.1104/pp.96.2.635. View