» Articles » PMID: 20053906

SNAP-25 is a Target of Protein Kinase C Phosphorylation Critical to NMDA Receptor Trafficking

Overview
Journal J Neurosci
Specialty Neurology
Date 2010 Jan 8
PMID 20053906
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

Protein kinase C (PKC) enhances NMDA receptor (NMDAR)-mediated currents and promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. Although the mechanisms of PKC potentiation are established, the molecular target of PKC is unclear. Here we show that synaptosomal-associated protein of 25 kDa (SNAP-25), a SNARE protein, is functionally relevant to PKC-dependent NMDAR insertion, and identify serine residue-187 as the molecular target of PKC phosphorylation. Constitutively active PKC delivered via the patch pipette potentiated NMDA (but not AMPA) whole-cell currents in hippocampal neurons. Expression of RNAi targeting SNAP-25 or mutant SNAP-25(S187A) and/or acute disruption of the SNARE complex by treatment with BoNT A, BoNT B or SNAP-25 C-terminal blocking peptide abolished NMDAR potentiation. A SNAP-25 peptide and function-blocking antibody suppressed PKC potentiation of NMDA EPSCs at mossy fiber-CA3 synapses. These findings identify SNAP-25 as the target of PKC phosphorylation critical to PKC-dependent incorporation of synaptic NMDARs and document a postsynaptic action of this major SNARE protein relevant to synaptic plasticity.

Citing Articles

SNARE protein SNAP25 regulates the chloride-transporter KCC2 in neurons.

Raveendran V, Serranilla M, Asgarihafshejani A, de Saint-Rome M, Cherednychenko M, Mullany S iScience. 2024; 27(11):111156.

PMID: 39507243 PMC: 11539599. DOI: 10.1016/j.isci.2024.111156.


Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity.

Righes Marafiga J, Calcagnotto M Adv Neurobiol. 2023; 34:103-141.

PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3.


Action of Botulinum Neurotoxin E Type in Experimental Epilepsies.

Antonucci F, Bozzi Y Toxins (Basel). 2023; 15(9).

PMID: 37755976 PMC: 10536604. DOI: 10.3390/toxins15090550.


Molecular Mechanisms Underlying NMDARs Dysfunction and Their Role in ADHD Pathogenesis.

Kus J, Saramowicz K, Czerniawska M, Wiese W, Siwecka N, Rozpedek-Kaminska W Int J Mol Sci. 2023; 24(16).

PMID: 37629164 PMC: 10454781. DOI: 10.3390/ijms241612983.


Prognostic evaluation of pancreatic cancer based on the model of chemo-radiotherapy resistance-related genes.

Sun H, Zhang W, Chu Y, Zhou L, Gong F, Li W J Gastrointest Oncol. 2023; 14(3):1525-1545.

PMID: 37435207 PMC: 10331760. DOI: 10.21037/jgo-23-308.


References
1.
Lu W, Man H, Ju W, Trimble W, MacDonald J, Wang Y . Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001; 29(1):243-54. DOI: 10.1016/s0896-6273(01)00194-5. View

2.
Shimazaki Y, Nishiki T, Omori A, Sekiguchi M, Kamata Y, Kozaki S . Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem. 1996; 271(24):14548-53. DOI: 10.1074/jbc.271.24.14548. View

3.
Wang H, Hu Y, Tsien J . Molecular and systems mechanisms of memory consolidation and storage. Prog Neurobiol. 2006; 79(3):123-35. DOI: 10.1016/j.pneurobio.2006.06.004. View

4.
Okabe S, Miwa A, Okado H . Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci. 1999; 19(18):7781-92. PMC: 6782467. View

5.
Blanpied T, Scott D, Ehlers M . Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron. 2002; 36(3):435-49. DOI: 10.1016/s0896-6273(02)00979-0. View