Frequency-domain Simulations of a Negative-index Material with Embedded Gain
Overview
Affiliations
We solve the equations governing light propagation in a negative-index material with embedded nonlinearly saturable gain material using a frequency-domain model. We show that available gain materials can lead to complete loss compensation only if they are located in the regions where the field enhancement is maximal. We study the increased enhancement of the fields in the gain composite as well as in the metal inclusions and show analytically that the effective gain is determined by the average near-field enhancement.
Mukai K, Uchiyama K, Iwata K, Pribyl I Nanomaterials (Basel). 2025; 15(5).
PMID: 40072138 PMC: 11901793. DOI: 10.3390/nano15050335.
Molecular Plasmonics with Metamaterials.
Wang P, Krasavin A, Liu L, Jiang Y, Li Z, Guo X Chem Rev. 2022; 122(19):15031-15081.
PMID: 36194441 PMC: 9562285. DOI: 10.1021/acs.chemrev.2c00333.
Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis.
Dubi Y, Un I, Sivan Y Chem Sci. 2021; 11(19):5017-5027.
PMID: 34122958 PMC: 8159236. DOI: 10.1039/c9sc06480j.
Minimal spaser threshold within electrodynamic framework: Shape, size and modes.
Arnold N, Hrelescu C, Klar T Ann Phys. 2016; 528(3-4):295-306.
PMID: 27158151 PMC: 4834728. DOI: 10.1002/andp.201500318.
Loss-free and active optical negative-index metamaterials.
Xiao S, Drachev V, Kildishev A, Ni X, Chettiar U, Yuan H Nature. 2010; 466(7307):735-8.
PMID: 20686570 DOI: 10.1038/nature09278.