» Articles » PMID: 20031978

Kingdoms Protozoa and Chromista and the Eozoan Root of the Eukaryotic Tree

Overview
Journal Biol Lett
Specialty Biology
Date 2009 Dec 25
PMID 20031978
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase).

Citing Articles

A robustly rooted tree of eukaryotes reveals their excavate ancestry.

Williamson K, Eme L, Banos H, McCarthy C, Susko E, Kamikawa R Nature. 2025; .

PMID: 40074902 DOI: 10.1038/s41586-025-08709-5.


Biological and Nutritional Applications of Microalgae.

Saritas S, Kalkan A, Yilmaz K, Gurdal S, Goksan T, Witkowska A Nutrients. 2025; 17(1.

PMID: 39796527 PMC: 11722913. DOI: 10.3390/nu17010093.


Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.

He F, Zhao L, Qu X, Li K, Guo J, Zhao F Proc Natl Acad Sci U S A. 2024; 121(50):e2413678121.

PMID: 39642204 PMC: 11648859. DOI: 10.1073/pnas.2413678121.


Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes.

Ballmer D, Lou H, Ishii M, Turk B, Akiyoshi B J Cell Biol. 2024; 223(11).

PMID: 39196069 PMC: 11354203. DOI: 10.1083/jcb.202401169.


Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins.

Ballmer D, Carter W, van Hooff J, Tromer E, Ishii M, Ludzia P Open Biol. 2024; 14(6):240025.

PMID: 38862021 PMC: 11286163. DOI: 10.1098/rsob.240025.


References
1.
Moustafa A, Beszteri B, Maier U, Bowler C, Valentin K, Bhattacharya D . Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science. 2009; 324(5935):1724-6. DOI: 10.1126/science.1172983. View

2.
de Melo Godoy P, Nogueira-Junior L, Paes L, Cornejo A, Martins R, Silber A . Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea. Eukaryot Cell. 2009; 8(10):1592-603. PMC: 2756867. DOI: 10.1128/EC.00161-09. View

3.
Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev S, Jakobsen K . Phylogenomics reshuffles the eukaryotic supergroups. PLoS One. 2007; 2(8):e790. PMC: 1949142. DOI: 10.1371/journal.pone.0000790. View

4.
Roger A, Simpson A . Evolution: revisiting the root of the eukaryote tree. Curr Biol. 2009; 19(4):R165-7. DOI: 10.1016/j.cub.2008.12.032. View

5.
Cavalier-Smith T . The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002; 52(Pt 2):297-354. DOI: 10.1099/00207713-52-2-297. View