» Articles » PMID: 19964628

Monitoring Intramyocardial Reentry Using Alternating Transillumination

Overview
Date 2009 Dec 8
PMID 19964628
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Intramyocardial reentry is implicated as a primary cause of the most deadly cardiac arrhythmias known as polymorphic ventricular tachycardia and ventricular fibrillation. However, the mechanisms involved in the triggering of such reentry and controlling its subsequent dynamics remain poorly understood. One of the major obstacles has been a lack of adequate tools that would enable 3D imaging of electrical excitation and reentry inside thick ventricular wall. Here, we present a new experimental technique, termed alternating transillumination (AT), aimed at filling this gap. The AT technique utilizes a recently synthesized near-infrared fluorescent voltage-sensitive dye, DI-4-ANBDQBS. We apply AT to study the dynamics of reentry during shock-induced polymorphic ventricular tachycardia in pig myocardium.

Citing Articles

Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review.

Baines O, Sha R, Kalla M, Holmes A, Efimov I, Pavlovic D Europace. 2024; 26(2).

PMID: 38227822 PMC: 10847904. DOI: 10.1093/europace/euae017.


Optical mapping of contracting hearts.

Kappadan V, Sohi A, Parlitz U, Luther S, Uzelac I, Fenton F J Physiol. 2023; 601(8):1353-1370.

PMID: 36866700 PMC: 10952556. DOI: 10.1113/JP283683.


Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.

Lebert J, Mittal M, Christoph J Phys Rev E. 2023; 107(1-1):014221.

PMID: 36797900 PMC: 11493429. DOI: 10.1103/PhysRevE.107.014221.


Electromechanical vortex filaments during cardiac fibrillation.

Christoph J, Chebbok M, Richter C, Schroder-Schetelig J, Bittihn P, Stein S Nature. 2018; 555(7698):667-672.

PMID: 29466325 DOI: 10.1038/nature26001.


Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings.

Macianskiene R, Martisiene I, Navalinskas A, Vosyliute R, Treinys R, Vaidelyte B PLoS One. 2015; 10(4):e0123050.

PMID: 25881157 PMC: 4400155. DOI: 10.1371/journal.pone.0123050.


References
1.
Bernus O, Wellner M, Mironov S, Pertsov A . Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys Med Biol. 2005; 50(2):215-29. DOI: 10.1088/0031-9155/50/2/003. View

2.
Baxter W, Mironov S, Zaitsev A, Jalife J, Pertsov A . Visualizing excitation waves inside cardiac muscle using transillumination. Biophys J. 2001; 80(1):516-30. PMC: 1301253. DOI: 10.1016/S0006-3495(01)76034-1. View

3.
Matiukas A, Mitrea B, Qin M, Pertsov A, Shvedko A, Warren M . Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm. 2007; 4(11):1441-51. PMC: 2121222. DOI: 10.1016/j.hrthm.2007.07.012. View

4.
Khait V, Bernus O, Mironov S, Pertsov A . Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging. J Biomed Opt. 2006; 11(3):34007. DOI: 10.1117/1.2204030. View

5.
Pertsov A, Wellner M, Vinson M, Jalife J . Topological constraint on scroll wave pinning. Phys Rev Lett. 2000; 84(12):2738-41. DOI: 10.1103/PhysRevLett.84.2738. View