» Articles » PMID: 19940244

Genetic Dissection of Floridean Starch Synthesis in the Cytosol of the Model Dinoflagellate Crypthecodinium Cohnii

Overview
Specialty Science
Date 2009 Nov 27
PMID 19940244
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Starch defines an insoluble semicrystalline form of storage polysaccharides restricted to Archaeplastida (red and green algae, land plants, and glaucophytes) and some secondary endosymbiosis derivatives of the latter. While green algae and land-plants store starch in plastids by using an ADP-glucose-based pathway related to that of cyanobacteria, red algae, glaucophytes, cryptophytes, dinoflagellates, and apicomplexa parasites store a similar type of polysaccharide named floridean starch in their cytosol or periplast. These organisms are suspected to store their floridean starch from UDP-glucose in a fashion similar to heterotrophic eukaryotes. However, experimental proof of this suspicion has never been produced. Dinoflagellates define an important group of both photoautotrophic and heterotrophic protists. We now report the selection and characterization of a low starch mutant of the heterotrophic dinoflagellate Crypthecodinium cohnii. We show that the sta1-1 mutation of C. cohnii leads to a modification of the UDP-glucose-specific soluble starch synthase activity that correlates with a decrease in starch content and an alteration of amylopectin structure. These experimental results validate the UDP-glucose-based pathway proposed for floridean starch synthesis.

Citing Articles

Oleaginous Heterotrophic Dinoflagellates-Crypthecodiniaceae.

Kwok A, Law S, Wong J Mar Drugs. 2023; 21(3).

PMID: 36976211 PMC: 10055936. DOI: 10.3390/md21030162.


Single-cell transcriptome sequencing revealing the difference in photosynthesis and carbohydrate metabolism between epidermal cells and non-epidermal cells of (Rhodophyta).

Chen H, Hu Y, Li P, Feng X, Jiang M, Sui Z Front Plant Sci. 2022; 13:968158.

PMID: 36466256 PMC: 9714639. DOI: 10.3389/fpls.2022.968158.


Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging.

Uwizeye C, Decelle J, Jouneau P, Flori S, Gallet B, Keck J Nat Commun. 2021; 12(1):1049.

PMID: 33594064 PMC: 7886885. DOI: 10.1038/s41467-021-21314-0.


Formation of starch in plant cells.

Pfister B, Zeeman S Cell Mol Life Sci. 2016; 73(14):2781-807.

PMID: 27166931 PMC: 4919380. DOI: 10.1007/s00018-016-2250-x.


The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies.

Bellefeuille S, Dorion S, Rivoal J, Morse D PLoS One. 2014; 9(11):e111067.

PMID: 25368991 PMC: 4219697. DOI: 10.1371/journal.pone.0111067.


References
1.
Morell M, Samuel M, OShea M . Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis. 1998; 19(15):2603-11. DOI: 10.1002/elps.1150191507. View

2.
Deschamps P, Guillebeault D, Devassine J, Dauvillee D, Haebel S, Steup M . The heterotrophic dinoflagellate Crypthecodinium cohnii defines a model genetic system to investigate cytoplasmic starch synthesis. Eukaryot Cell. 2008; 7(5):872-80. PMC: 2394971. DOI: 10.1128/EC.00461-07. View

3.
Beam C, Himes M . Evidence for sexual fusion and recombination in the dinoflagellate Crypthecodinium (Gyrodinium) cohnii. Nature. 1974; 250(465):435-6. DOI: 10.1038/250435a0. View

4.
Deschamps P, Moreau H, Worden A, Dauvillee D, Ball S . Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics. 2008; 178(4):2373-87. PMC: 2323822. DOI: 10.1534/genetics.108.087205. View

5.
Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux J, Buleon A . Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol. 2007; 25(3):536-48. DOI: 10.1093/molbev/msm280. View