» Articles » PMID: 19915147

Immune Profile and Mitotic Index of Metastatic Melanoma Lesions Enhance Clinical Staging in Predicting Patient Survival

Abstract

Although remission rates for metastatic melanoma are generally very poor, some patients can survive for prolonged periods following metastasis. We used gene expression profiling, mitotic index (MI), and quantification of tumor infiltrating leukocytes (TILs) and CD3+ cells in metastatic lesions to search for a molecular basis for this observation and to develop improved methods for predicting patient survival. We identified a group of 266 genes associated with postrecurrence survival. Genes positively associated with survival were predominantly immune response related (e.g., ICOS, CD3d, ZAP70, TRAT1, TARP, GZMK, LCK, CD2, CXCL13, CCL19, CCR7, VCAM1) while genes negatively associated with survival were cell proliferation related (e.g., PDE4D, CDK2, GREF1, NUSAP1, SPC24). Furthermore, any of the 4 parameters (prevalidated gene expression signature, TILs, CD3, and in particular MI) improved the ability of Tumor, Node, Metastasis (TNM) staging to predict postrecurrence survival; MI was the most significant contributor (HR = 2.13, P = 0.0008). An immune response gene expression signature and presence of TILs and CD3+ cells signify immune surveillance as a mechanism for prolonged survival in these patients and indicate improved patient subcategorization beyond current TNM staging.

Citing Articles

Unveiling ac4C modification pattern: a prospective target for improving the response to immunotherapeutic strategies in melanoma.

Liu J, Zhang P, Wu C, Luo B, Cao X, Tang J J Transl Med. 2025; 23(1):287.

PMID: 40050821 PMC: 11887236. DOI: 10.1186/s12967-025-06297-6.


CDKN2A, a key gene in copper-induced cell death model, influencing melanoma invasion and apoptosis.

Li J, Yang X, Yin C, Li S, Xu Y, Liu B Discov Oncol. 2025; 16(1):246.

PMID: 40014167 PMC: 11867994. DOI: 10.1007/s12672-025-01992-8.


An -Based Biomarker Combination Accurately Predicts Melanoma Patient Survival.

Sanchez-Beltran J, Soler Diaz J, Herraiz C, Olivares C, Cerdido S, Cerezuela-Fuentes P Int J Mol Sci. 2025; 26(4).

PMID: 40004203 PMC: 11855888. DOI: 10.3390/ijms26041739.


Prognostic value of immune biomarkers in melanoma loco-regional metastases.

Hugdahl E, Aziz S, Klingen T, Akslen L PLoS One. 2025; 20(1):e0315284.

PMID: 39883679 PMC: 11781691. DOI: 10.1371/journal.pone.0315284.


Integrating bioinformatics and machine learning to identify AhR-related gene signatures for prognosis and tumor microenvironment modulation in melanoma.

Li Q, Li H Front Immunol. 2025; 15():1519345.

PMID: 39835132 PMC: 11743449. DOI: 10.3389/fimmu.2024.1519345.


References
1.
Mihm Jr M, Clemente C, Cascinelli N . Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest. 1996; 74(1):43-7. View

2.
Jaeger J, Koczan D, Thiesen H, Ibrahim S, Gross G, Spang R . Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res. 2007; 13(3):806-15. DOI: 10.1158/1078-0432.CCR-06-1820. View

3.
Furey T, Cristianini N, Duffy N, Bednarski D, Schummer M, Haussler D . Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000; 16(10):906-14. DOI: 10.1093/bioinformatics/16.10.906. View

4.
Dave S, Wright G, Tan B, Rosenwald A, Gascoyne R, Chan W . Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004; 351(21):2159-69. DOI: 10.1056/NEJMoa041869. View

5.
Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam B . The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A. 2005; 102(17):6092-7. PMC: 1087936. DOI: 10.1073/pnas.0501564102. View