» Articles » PMID: 19911392

Ultrasmall Near-infrared Non-cadmium Quantum Dots for in Vivo Tumor Imaging

Overview
Journal Small
Date 2009 Nov 14
PMID 19911392
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The high tumor uptake of ultrasmall near-infrared quantum dots (QDs) attributed to the enhanced permeability and retention effect is reported. InAs/InP/ZnSe QDs coated by mercaptopropionic acid (MPA) exhibit an emission wavelength of about 800 nm (QD800-MPA) with very small hydrodynamic diameter (<10 nm). Using 22B and LS174T tumor xenograft models, in vivo and ex vivo imaging studies show that QD800-MPA is highly accumulated in the tumor area, which is very promising for tumor detection in living mice. The ex vivo elemental analysis (Indium) using inductively coupled plasma (ICP) spectrometry confirm the tumor uptake of QDs. The ICP data are consistent with the in vivo and ex vivo fluorescence imaging. Human serum albumin (HSA)-coated QD800-MPA nanoparticles (QD800-MPA-HSA) show reduced localization in mononuclear phagocytic system-related organs over QD800-MPA plausibly due to the low uptake of QD800-MPA-HSA in macrophage cells. QD800-MPA-HSA may have great potential for in vivo fluorescence imaging.

Citing Articles

Cu-chelated InP/ZnSe/ZnS QDs as PET/fluorescence dual-modal probe for tumor imaging.

Zhao Z, Otsuka A, Nakamura N, Tatsumi T, Nakatsui K, Tsuzukiishi T Sci Technol Adv Mater. 2025; 26(1):2463317.

PMID: 40065760 PMC: 11892056. DOI: 10.1080/14686996.2025.2463317.


Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles.

Sang D, Luo X, Liu J Nanomicro Lett. 2023; 16(1):44.

PMID: 38047998 PMC: 10695915. DOI: 10.1007/s40820-023-01266-4.


Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics.

Li C, Huang J, Yuan L, Xie W, Ying Y, Li C Theranostics. 2023; 13(9):3064-3102.

PMID: 37284447 PMC: 10240821. DOI: 10.7150/thno.80579.


Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging.

Cheng Y, Ling S, Geng Y, Wang Y, Xu J Nanoscale Adv. 2022; 3(8):2180-2195.

PMID: 36133767 PMC: 9417800. DOI: 10.1039/d0na00933d.


Ultrabright Fluorescent Silica Nanoparticles for Multiplexed Detection.

Peerzade S, Makarova N, Sokolov I Nanomaterials (Basel). 2020; 10(5).

PMID: 32397124 PMC: 7279313. DOI: 10.3390/nano10050905.


References
1.
Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J . Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307(5709):538-44. PMC: 1201471. DOI: 10.1126/science.1104274. View

2.
Diagaradjane P, Orenstein-Cardona J, Colon-Casasnovas N, Deorukhkar A, Shentu S, Kuno N . Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res. 2008; 14(3):731-41. DOI: 10.1158/1078-0432.CCR-07-1958. View

3.
Cai W, Shin D, Chen K, Gheysens O, Cao Q, Wang S . Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006; 6(4):669-76. DOI: 10.1021/nl052405t. View

4.
Cai W, Hsu A, Li Z, Chen X . Are quantum dots ready for in vivo imaging in human subjects?. Nanoscale Res Lett. 2011; 2(6):265-281. PMC: 3050636. DOI: 10.1007/s11671-007-9061-9. View

5.
Xie R, Chen K, Chen X, Peng X . InAs/InP/ZnSe Core/Shell/Shell Quantum Dots as Near-Infrared Emitters: Bright, Narrow-Band, Non-Cadmium Containing, and Biocompatible. Nano Res. 2010; 1(6):457-464. PMC: 2902876. DOI: 10.1007/s12274-008-8048-x. View