» Articles » PMID: 19880746

Synaptic Scaffolding Protein SYD-2 Clusters and Activates Kinesin-3 UNC-104 in C. Elegans

Overview
Specialty Science
Date 2009 Nov 3
PMID 19880746
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Kinesin-3 motor UNC-104/KIF1A is essential for transporting synaptic precursors to synapses. Although the mechanism of cargo binding is well understood, little is known how motor activity is regulated. We mapped functional interaction domains between SYD-2 and UNC-104 by using yeast 2-hybrid and pull-down assays and by using FRET/fluorescence lifetime imaging microscopy to image the binding of SYD-2 to UNC-104 in living Caenorhabditis elegans. We found that UNC-104 forms SYD-2-dependent axonal clusters (appearing during the transition from L2 to L3 larval stages), which behave in FRAP experiments as dynamic aggregates. High-resolution microscopy reveals that these clusters contain UNC-104 and synaptic precursors (synaptobrevin-1). Analysis of motor motility indicates bi-directional movement of UNC-104, whereas in syd-2 mutants, loss of SYD-2 binding reduces net anterograde movement and velocity (similar after deleting UNC-104's liprin-binding domain), switching to retrograde transport characteristics when no role of SYD-2 on dynein and conventional kinesin UNC-116 motility was found. These data present a kinesin scaffolding protein that controls both motor clustering along axons and motor motility, resulting in reduced cargo transport efficiency upon loss of interaction.

Citing Articles

LRK-1/LRRK2 and AP-3 regulate trafficking of synaptic vesicle precursors through active zone protein SYD-2/Liprin-α.

Nadiminti S, Dixit S, Ratnakaran N, Deb A, Hegde S, Boyanapalli S PLoS Genet. 2024; 20(5):e1011253.

PMID: 38722918 PMC: 11081264. DOI: 10.1371/journal.pgen.1011253.


Liprin-α proteins are master regulators of human presynapse assembly.

De La Cruz B, Campos J, Molinaro A, Xie X, Jin G, Wei Z Nat Neurosci. 2024; 27(4):629-642.

PMID: 38472649 PMC: 11001580. DOI: 10.1038/s41593-024-01592-9.


Comparative analysis of two kinesins KLP-6 and UNC-104 reveals a common and distinct activation mechanism in kinesin-3.

Kita T, Chiba K, Wang J, Nakagawa A, Niwa S Elife. 2024; 12.

PMID: 38206323 PMC: 10945585. DOI: 10.7554/eLife.89040.


Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species.

Petzoldt A Cells. 2023; 12(18).

PMID: 37759474 PMC: 10527734. DOI: 10.3390/cells12182248.


Presynaptic Cytomatrix Proteins.

Jin Y, Zhai R Adv Neurobiol. 2023; 33:23-42.

PMID: 37615862 DOI: 10.1007/978-3-031-34229-5_2.


References
1.
Dai Y, Taru H, Deken S, Grill B, Ackley B, Nonet M . SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neurosci. 2006; 9(12):1479-87. DOI: 10.1038/nn1808. View

2.
Koushika S, Schaefer A, Vincent R, Willis J, Bowerman B, Nonet M . Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci. 2004; 24(16):3907-16. PMC: 6729415. DOI: 10.1523/JNEUROSCI.5039-03.2004. View

3.
Christensen M, Estevez A, Yin X, Fox R, Morrison R, McDonnell M . A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron. 2002; 33(4):503-14. DOI: 10.1016/s0896-6273(02)00591-3. View

4.
Chen Y, Periasamy A . Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc Res Tech. 2003; 63(1):72-80. DOI: 10.1002/jemt.10430. View

5.
Yeh E, Kawano T, Weimer R, Bessereau J, Zhen M . Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci. 2005; 25(15):3833-41. PMC: 6724931. DOI: 10.1523/JNEUROSCI.4978-04.2005. View