» Articles » PMID: 19875468

Hyperpolarized MR Imaging: Neurologic Applications of Hyperpolarized Metabolism

Overview
Specialty Neurology
Date 2009 Oct 31
PMID 19875468
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Hyperpolarization is the general term for a method of enhancing the spin-polarization difference of populations of nuclei in a magnetic field. No less than 5 distinct techniques (dynamic nuclear polarization [DNP]; parahydrogen-induced polarization-parahydrogen and synthesis allow dramatically enhanced nuclear alignment [PHIP-PASADENA]; xenon/helium polarization transfer; Brute Force; (1)H hyperpolarized water) are currently under exhaustive investigation as means of amplifying the intrinsically (a few parts per million) weak signal intensity used in conventional MR neuroimaging and spectroscopy. HD-MR imaging in vivo is a metabolic imaging tool causing much of the interest in HD-MR imaging. The most successful to date has been DNP, in which carbon-13 ((13)C) pyruvic acid has shown many. PHIP-PASADENA with (13)C succinate has shown HD-MR metabolism in vivo in tumor-bearing mice of several types, entering the Krebs-tricarboxylic acid cycle for ultrafast detection with (13)C MR imaging, MR spectroscopy, and chemical shift imaging. We will discuss 5 promising preclinical studies: (13)C succinate PHIP in brain tumor; (13)C ethylpyruvate DNP and (13)C acetate; DNP in rodent brain; (13)C succinate PHIP versus gadolinium imaging of stroke; and (1)H hyperpolarized imaging. Recent developments in clinical (13)C neurospectroscopy encourage us to overcome the remaining barriers to clinical HD-MR imaging.

Citing Articles

C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI.

Miller J, Grist J, Serres S, Larkin J, Lau A, Ray K Sci Rep. 2018; 8(1):15082.

PMID: 30305655 PMC: 6180068. DOI: 10.1038/s41598-018-33363-5.


Succinate Accumulation Is Associated with a Shift of Mitochondrial Respiratory Control and HIF-1α Upregulation in PTEN Negative Prostate Cancer Cells.

Weber A, Klocker H, Oberacher H, Gnaiger E, Neuwirt H, Sampson N Int J Mol Sci. 2018; 19(7).

PMID: 30037119 PMC: 6073160. DOI: 10.3390/ijms19072129.


Biomolecular MRI reporters: Evolution of new mechanisms.

Mukherjee A, Davis H, Ramesh P, Lu G, Shapiro M Prog Nucl Magn Reson Spectrosc. 2017; 102-103:32-42.

PMID: 29157492 PMC: 5726449. DOI: 10.1016/j.pnmrs.2017.05.002.


A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer.

Coffey A, Shchepin R, Feng B, Colon R, Wilkens K, Waddell K J Magn Reson. 2017; 284:115-124.

PMID: 29028543 PMC: 5708540. DOI: 10.1016/j.jmr.2017.09.013.


Magnetic resonance imaging with hyperpolarized agents: methods and applications.

Adamson E, Ludwig K, Mummy D, Fain S Phys Med Biol. 2017; 62(13):R81-R123.

PMID: 28384123 PMC: 5730331. DOI: 10.1088/1361-6560/aa6be8.


References
1.
Goldman M, Johannesson H, Axelsson O, Karlsson M . Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI. Magn Reson Imaging. 2005; 23(2):153-7. DOI: 10.1016/j.mri.2004.11.031. View

2.
Hovener J, Chekmenev E, Harris K, Perman W, Robertson L, Ross B . PASADENA hyperpolarization of 13C biomolecules: equipment design and installation. MAGMA. 2008; 22(2):111-21. PMC: 2664858. DOI: 10.1007/s10334-008-0155-x. View

3.
Shiino A, Matsuda M, Handa J, Chance B . Poor recovery of mitochondrial redox state in CA1 after transient forebrain ischemia in gerbils. Stroke. 1998; 29(11):2421-4; discussion 2425. DOI: 10.1161/01.str.29.11.2421. View

4.
Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson J . Parahydrogen-induced polarization in imaging: subsecond (13)C angiography. Magn Reson Med. 2001; 46(1):1-5. DOI: 10.1002/mrm.1152. View

5.
Kim J, Yu Y, Kim S, Lee J . Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res. 2005; 1060(1-2):188-92. DOI: 10.1016/j.brainres.2005.08.029. View