» Articles » PMID: 1987135

Cloning and Characterization of Plasmid-encoded Genes for the Degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas Sp. Strain P51

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1991 Jan 1
PMID 1987135
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Pseudomonas sp. strain P51 is able to use 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene as sole carbon and energy sources. Two gene clusters involved in the degradation of these compounds were identified on a catabolic plasmid, pP51, with a size of 110 kb by using hybridization. They were further characterized by cloning in Escherichia coli, Pseudomonas putida KT2442, and Alcaligenes eutrophus JMP222. Expression studies in these organisms showed that the upper-pathway genes (tcbA and tcbB) code for the conversion of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene to 3,4-dichlorocatechol and 3,4,6-trichlorocatechol, respectively, by means of a dioxygenase system and a dehydrogenase. The lower-pathway genes have the order tcbC-tcbD-tcbE and encode a catechol 1,2-dioxygenase II, a cycloisomerase II, and a hydrolase II, respectively. The combined action of these enzymes degrades 3,4-dichlorocatechol and 3,4,6-trichlorocatechol to a chloromaleylacetic acid. The release of one chlorine atom from 3,4-dichlorocatechol takes place during lactonization of 2,3-dichloromuconic acid.

Citing Articles

Evolution End Classification of Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D).

Iasakov T Int J Mol Sci. 2023; 24(18).

PMID: 37762674 PMC: 10531765. DOI: 10.3390/ijms241814370.


Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium NH9 and Reclassification of the Strains of the Genera and Based on Phylogenetic and Whole-Genome Sequence Analyses.

Moriuchi R, Dohra H, Kanesaki Y, Ogawa N Front Microbiol. 2019; 10:133.

PMID: 30809202 PMC: 6379261. DOI: 10.3389/fmicb.2019.00133.


Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants.

Karich A, Ullrich R, Scheibner K, Hofrichter M Front Microbiol. 2017; 8:1463.

PMID: 28848501 PMC: 5552789. DOI: 10.3389/fmicb.2017.01463.


Bacterial degradation of chlorophenols and their derivatives.

Arora P, Bae H Microb Cell Fact. 2014; 13(1):31.

PMID: 24589366 PMC: 3975901. DOI: 10.1186/1475-2859-13-31.


In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene.

Finley S, Broadbelt L, Hatzimanikatis V BMC Syst Biol. 2010; 4:7.

PMID: 20122273 PMC: 2830930. DOI: 10.1186/1752-0509-4-7.


References
1.
Don R, Weightman A, Knackmuss H, Timmis K . Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol. 1985; 161(1):85-90. PMC: 214838. DOI: 10.1128/jb.161.1.85-90.1985. View

2.
Hanahan D . Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166(4):557-80. DOI: 10.1016/s0022-2836(83)80284-8. View

3.
Ensley B, Ratzkin B, Osslund T, Simon M, Wackett L, Gibson D . Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983; 222(4620):167-9. DOI: 10.1126/science.6353574. View

4.
Vieira J, Messing J . Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985; 33(1):103-19. DOI: 10.1016/0378-1119(85)90120-9. View

5.
Furukawa K, Miyazaki T . Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986; 166(2):392-8. PMC: 214617. DOI: 10.1128/jb.166.2.392-398.1986. View