Kim D, Jeong J, Choi J
ACS Omega. 2024; 9(36):37934-37941.
PMID: 39281924
PMC: 11391437.
DOI: 10.1021/acsomega.4c04474.
Melo-Filho C, Su G, Liu K, Muratov E, Tropsha A, Liu J
Glycobiology. 2024; 34(7).
PMID: 38836441
PMC: 11180703.
DOI: 10.1093/glycob/cwae039.
Zhao X, Kong Y, Ji Y, Xin X, Chen L, Chen G
Mol Divers. 2023; 28(4):2077-2097.
PMID: 37910346
DOI: 10.1007/s11030-023-10735-2.
Puri D, Lee D, Khankal D, Singh Thakur M, Alfaisal F, Alam S
ACS Omega. 2023; 8(42):38950-38960.
PMID: 37901507
PMC: 10601425.
DOI: 10.1021/acsomega.3c03375.
Belfield S, Cronin M, Enoch S, Firman J
PLoS One. 2023; 18(5):e0282924.
PMID: 37163504
PMC: 10171609.
DOI: 10.1371/journal.pone.0282924.
Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations.
Sharma B, Chenthamarakshan V, Dhurandhar A, Pereira S, Hendler J, Dordick J
Sci Rep. 2023; 13(1):4908.
PMID: 36966203
PMC: 10039880.
DOI: 10.1038/s41598-023-31169-8.
Predicting Chemical End-of-Life Scenarios Using Structure-Based Classification Models.
Hernandez-Betancur J, Ruiz-Mercado G, Martin M
ACS Sustain Chem Eng. 2023; 11(9):3594-3602.
PMID: 36911873
PMC: 9993395.
DOI: 10.1021/acssuschemeng.2c05662.
Molecular Toxicity Virtual Screening Applying a Quantized Computational SNN-Based Framework.
Nascimben M, Rimondini L
Molecules. 2023; 28(3).
PMID: 36771009
PMC: 9919191.
DOI: 10.3390/molecules28031342.
A joint optimization QSAR model of fathead minnow acute toxicity based on a radial basis function neural network and its consensus modeling.
Wang Y, Chen X
RSC Adv. 2022; 10(36):21292-21308.
PMID: 35518745
PMC: 9054390.
DOI: 10.1039/d0ra02701d.
Prediction of the Neurotoxic Potential of Chemicals Based on Modelling of Molecular Initiating Events Upstream of the Adverse Outcome Pathways of (Developmental) Neurotoxicity.
Gadaleta D, Spinu N, Roncaglioni A, Cronin M, Benfenati E
Int J Mol Sci. 2022; 23(6).
PMID: 35328472
PMC: 8954925.
DOI: 10.3390/ijms23063053.
Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking.
Fernandes P, Martins D, de Souza Bozzi A, Martins J, de Moraes A, Maltarollo V
Mol Divers. 2021; 25(3):1301-1314.
PMID: 34191245
PMC: 8241884.
DOI: 10.1007/s11030-021-10261-z.
Simplex representation of molecular structure as universal QSAR/QSPR tool.
Kuzmin V, Artemenko A, Ognichenko L, Hromov A, Kosinskaya A, Stelmakh S
Struct Chem. 2021; 32(4):1365-1392.
PMID: 34177203
PMC: 8218296.
DOI: 10.1007/s11224-021-01793-z.
GGL-Tox: Geometric Graph Learning for Toxicity Prediction.
Jiang J, Wang R, Wei G
J Chem Inf Model. 2021; 61(4):1691-1700.
PMID: 33719422
PMC: 8155789.
DOI: 10.1021/acs.jcim.0c01294.
Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications.
Chen C, Tanaka K, Kotera M, Funatsu K
J Cheminform. 2021; 12(1):19.
PMID: 33430997
PMC: 7106596.
DOI: 10.1186/s13321-020-0417-9.
SAR and QSAR modeling of a large collection of LD rat acute oral toxicity data.
Gadaleta D, Vukovic K, Toma C, Lavado G, Karmaus A, Mansouri K
J Cheminform. 2021; 11(1):58.
PMID: 33430989
PMC: 6717335.
DOI: 10.1186/s13321-019-0383-2.
Structure-activity relationship-based chemical classification of highly imbalanced Tox21 datasets.
Idakwo G, Thangapandian S, Luttrell J, Li Y, Wang N, Zhou Z
J Cheminform. 2020; 12(1):66.
PMID: 33372637
PMC: 7592558.
DOI: 10.1186/s13321-020-00468-x.
Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network.
Yuan Q, Wei Z, Guan X, Jiang M, Wang S, Zhang S
Molecules. 2019; 24(18).
PMID: 31533341
PMC: 6766985.
DOI: 10.3390/molecules24183383.
Assessment of the cardiovascular adverse effects of drug-drug interactions through a combined analysis of spontaneous reports and predicted drug-target interactions.
Ivanov S, Lagunin A, Filimonov D, Poroikov V
PLoS Comput Biol. 2019; 15(7):e1006851.
PMID: 31323029
PMC: 6668846.
DOI: 10.1371/journal.pcbi.1006851.
KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images.
Cortes-Ciriano I, Bender A
J Cheminform. 2019; 11(1):41.
PMID: 31218493
PMC: 6582521.
DOI: 10.1186/s13321-019-0364-5.
Evaluating parameters for ligand-based modeling with random forest on sparse data sets.
Kensert A, Alvarsson J, Norinder U, Spjuth O
J Cheminform. 2018; 10(1):49.
PMID: 30306349
PMC: 6755600.
DOI: 10.1186/s13321-018-0304-9.