» Articles » PMID: 19854928

Effect of Glycosylation and Additional Domains on the Thermostability of a Family 10 Xylanase Produced by Thermopolyspora Flexuosa

Overview
Date 2009 Oct 27
PMID 19854928
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26, located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased stability mainly at low pH.

Citing Articles

Adding value to rice straw waste for high-level xylanase production using a new isolate of Bacillus altitudinis RS3025.

Ketsakhon P, Thammasittirong A, Thammasittirong S Folia Microbiol (Praha). 2022; 68(1):87-99.

PMID: 35945409 DOI: 10.1007/s12223-022-00998-x.


Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases.

Kellock M, Rahikainen J, Borisova A, Voutilainen S, Koivula A, Kruus K Biotechnol Biofuels Bioprod. 2022; 15(1):49.

PMID: 35568899 PMC: 9107766. DOI: 10.1186/s13068-022-02148-4.


Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design.

Li G, Zhou X, Li Z, Liu Y, Liu D, Miao Y Appl Microbiol Biotechnol. 2021; 105(11):4561-4576.

PMID: 34014347 DOI: 10.1007/s00253-021-11340-9.


Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

Mohd Zainudin M, Ramli N, Hassan M, Shirai Y, Tashiro K, Sakai K J Ind Microbiol Biotechnol. 2017; 44(6):869-877.

PMID: 28197796 DOI: 10.1007/s10295-017-1916-1.


Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris.

Chang X, Xu B, Bai Y, Luo H, Ma R, Shi P PLoS One. 2017; 12(2):e0171111.

PMID: 28187141 PMC: 5302446. DOI: 10.1371/journal.pone.0171111.


References
1.
Kittur F, Mangala S, Abu Rusd A, Kitaoka M, Tsujibo H, Hayashi K . Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett. 2003; 549(1-3):147-51. DOI: 10.1016/s0014-5793(03)00803-2. View

2.
Turunen O, Etuaho K, Fenel F, Vehmaanpera J, Wu X, Rouvinen J . A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism. J Biotechnol. 2001; 88(1):37-46. DOI: 10.1016/s0168-1656(01)00253-x. View

3.
Jafari-Aghdam J, Khajeh K, Ranjbar B, Nemat-Gorgani M . Deglycosylation of glucoamylase from Aspergillus niger: effects on structure, activity and stability. Biochim Biophys Acta. 2005; 1750(1):61-8. DOI: 10.1016/j.bbapap.2005.03.011. View

4.
Kamondi S, Szilagyi A, Barna L, Zavodszky P . Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling. Biochem Biophys Res Commun. 2008; 374(4):725-30. DOI: 10.1016/j.bbrc.2008.07.095. View

5.
Ducros V, Charnock S, Derewenda U, Derewenda Z, Dauter Z, Dupont C . Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J Biol Chem. 2000; 275(30):23020-6. DOI: 10.1074/jbc.275.30.23020. View