» Articles » PMID: 19847265

The Postsynaptic Function of Type II Cochlear Afferents

Overview
Journal Nature
Specialty Science
Date 2009 Oct 23
PMID 19847265
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

The mammalian cochlea is innervated by two classes of sensory neurons. Type I neurons make up 90-95% of the cochlear nerve and contact single inner hair cells to provide acoustic analysis as we know it. In contrast, the far less numerous type II neurons arborize extensively among outer hair cells (OHCs) and supporting cells. Their scarcity and smaller calibre axons have made them the subject of much speculation, but little experimental progress for the past 50 years. Here we record from type II fibres near their terminal arbors under OHCs to show that they receive excitatory glutamatergic synaptic input. The type II peripheral arbor conducts action potentials, but the small and infrequent glutamatergic excitation indicates a requirement for strong acoustic stimulation. Furthermore, we show that type II neurons are excited by ATP. Exogenous ATP depolarized type II neurons, both directly and by evoking glutamatergic synaptic input. These results prove that type II neurons function as cochlear afferents, and can be modulated by ATP. The lesser magnitude of synaptic drive dictates a fundamentally different role in auditory signalling from that of type I afferents.

Citing Articles

Pharmacological Approaches to Hearing Loss.

Cederroth C, Dyhrfjeld-Johnsen J, Canlon B Pharmacol Rev. 2024; 76(6):1063-1088.

PMID: 39164117 PMC: 11549935. DOI: 10.1124/pharmrev.124.001195.


Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro.

Vincent P, Young E, Edge A, Glowatzki E Proc Natl Acad Sci U S A. 2024; 121(31):e2315599121.

PMID: 39058581 PMC: 11294990. DOI: 10.1073/pnas.2315599121.


A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment.

Yeo X, Kwon S, Rinai K, Lee S, Jung S, Park R Antioxidants (Basel). 2024; 13(5).

PMID: 38790703 PMC: 11118506. DOI: 10.3390/antiox13050598.


GABAergic synapses between auditory efferent neurons and type II spiral ganglion afferent neurons in the mouse cochlea.

Bachman J, Kitcher S, Vattino L, Beaulac H, Chaves M, Rivera I bioRxiv. 2024; .

PMID: 38586043 PMC: 10996694. DOI: 10.1101/2024.03.28.587185.


Damage-evoked signals in cochlear neurons and supporting cells.

Wood M, Nowak N, Fuchs P Front Neurol. 2024; 15:1361747.

PMID: 38419694 PMC: 10899329. DOI: 10.3389/fneur.2024.1361747.


References
1.
Michna M, Knirsch M, Hoda J, Muenkner S, Langer P, Platzer J . Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol. 2003; 553(Pt 3):747-58. PMC: 2343630. DOI: 10.1113/jphysiol.2003.053256. View

2.
Nakagawa T, Akaike N, Kimitsuki T, Komune S, Arima T . ATP-induced current in isolated outer hair cells of guinea pig cochlea. J Neurophysiol. 1990; 63(5):1068-74. DOI: 10.1152/jn.1990.63.5.1068. View

3.
Tritsch N, Yi E, Gale J, Glowatzki E, Bergles D . The origin of spontaneous activity in the developing auditory system. Nature. 2007; 450(7166):50-5. DOI: 10.1038/nature06233. View

4.
Huang L, Greenwood D, Thorne P, Housley G . Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J Comp Neurol. 2005; 484(2):133-43. DOI: 10.1002/cne.20442. View

5.
Reid M, Flores-Otero J, Davis R . Firing patterns of type II spiral ganglion neurons in vitro. J Neurosci. 2004; 24(3):733-42. PMC: 6729262. DOI: 10.1523/JNEUROSCI.3923-03.2004. View