» Articles » PMID: 19815511

Rapid DNA Loss As a Counterbalance to Genome Expansion Through Retrotransposon Proliferation in Plants

Overview
Specialty Science
Date 2009 Oct 10
PMID 19815511
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

Transposable elements, particularly LTR-retrotransposons, comprise the primary vehicle for genome size expansion in plants, while DNA removal through illegitimate recombination and intrastrand homologous recombination serve as the most important counteracting forces to plant genomic obesity. Despite extensive research, the relative impact of these opposing forces and hence the directionality of genome size change remains unknown. In Gossypium (cotton), the 3-fold genome size variation among diploids is due largely to copy number variation of the gypsy-like retrotransposon Gorge3. Here we combine comparative sequence analysis with a modeling approach to study the directionality of genome size change in Gossypium. We demonstrate that the rate of DNA removal in the smaller genomes is sufficient to reverse genome expansion through Gorge3 proliferation. These data indicate that rates of DNA loss can be highly variable even within a single plant genus, and that the known mechanisms of DNA loss can indeed reverse the march toward genomic obesity.

Citing Articles

Exploring the complexity of genome size reduction in angiosperms.

Ezoe A, Seki M Plant Mol Biol. 2024; 114(6):121.

PMID: 39485504 PMC: 11530473. DOI: 10.1007/s11103-024-01518-w.


First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping.

Kobrlova L, cizkova J, Zoulova V, Vejvodova K, Hribova E BMC Plant Biol. 2024; 24(1):859.

PMID: 39266954 PMC: 11395855. DOI: 10.1186/s12870-024-05497-4.


Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in model grasses.

Decena M, Sancho R, Inda L, Perez-Collazos E, Catalan P Front Plant Sci. 2024; 15:1419255.

PMID: 39049853 PMC: 11266827. DOI: 10.3389/fpls.2024.1419255.


Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation.

Yu Z, Li J, Wang H, Ping B, Li X, Liu Z Hortic Res. 2024; 11(6):uhae118.

PMID: 38919560 PMC: 11197308. DOI: 10.1093/hr/uhae118.


Ancient hybridization and repetitive element proliferation in the evolutionary history of the monocot genus (Zingiberaceae).

Hlavata K, Zaveska E, Leong-Skornickova J, Pouch M, Poulsen A, Sida O Front Plant Sci. 2024; 15:1324358.

PMID: 38708400 PMC: 11066291. DOI: 10.3389/fpls.2024.1324358.


References
1.
SanMiguel P, Gaut B, Tikhonov A, Nakajima Y, Bennetzen J . The paleontology of intergene retrotransposons of maize. Nat Genet. 1998; 20(1):43-5. DOI: 10.1038/1695. View

2.
Shirasu K, Schulman A, Lahaye T, Schulze-Lefert P . A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000; 10(7):908-15. PMC: 310930. DOI: 10.1101/gr.10.7.908. View

3.
Bennetzen J, Kellogg E . Do Plants Have a One-Way Ticket to Genomic Obesity?. Plant Cell. 2002; 9(9):1509-1514. PMC: 157029. DOI: 10.1105/tpc.9.9.1509. View

4.
Vitte C, Bennetzen J . Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci U S A. 2006; 103(47):17638-43. PMC: 1693799. DOI: 10.1073/pnas.0605618103. View

5.
Thomas Jr C . The genetic organization of chromosomes. Annu Rev Genet. 1971; 5:237-56. DOI: 10.1146/annurev.ge.05.120171.001321. View