» Articles » PMID: 19804741

Specific Membrane Binding of Neurotoxin II Can Facilitate Its Delivery to Acetylcholine Receptor

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2009 Oct 7
PMID 19804741
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The action of three-finger snake alpha-neurotoxins at their targets, nicotinic acetylcholine receptors (nAChR), is widely studied because of its biological and pharmacological relevance. Most such studies deal only with ligands and receptor models; however, for many ligand/receptor systems the membrane environment may affect ligand binding. In this work we focused on binding of short-chain alpha-neurotoxin II (NTII) from Naja oxiana to the native-like lipid bilayer, and the possible role played by the membrane in delivering the toxin to nAChR. Experimental (NMR and mutagenesis) and molecular modeling (molecular-dynamics simulation) studies revealed a specific interaction of the toxin molecule with the phosphatidylserine headgroup of lipids, resulting in the proper topology of NTII on lipid bilayers favoring the attack of nAChR. Analysis of short-chain alpha-neurotoxins showed that most of them possess a high positive charge and sequence homology in the lipid-binding motif of NTII, implying that interaction with the membrane surrounding nAChR may be common for the toxin family.

Citing Articles

The protective mechanism of venom on diabetic kidney disease.

Lu H, Wu Y, Xie Y, Li X, Ji X, Jiang T J Venom Anim Toxins Incl Trop Dis. 2023; 29:e20230037.

PMID: 38094099 PMC: 10718305. DOI: 10.1590/1678-9199-JVATITD-2023-0037.


Molecular Basis for Mambalgin-2 Interaction with Heterotrimeric α-ENaC/ASIC1a/γ-ENaC Channels in Cancer Cells.

Lyukmanova E, Zaigraev M, Kulbatskii D, Isaev A, Kukushkin I, Bychkov M Toxins (Basel). 2023; 15(10).

PMID: 37888643 PMC: 10610865. DOI: 10.3390/toxins15100612.


Membrane-mediated interaction of non-conventional snake three-finger toxins with nicotinic acetylcholine receptors.

Shenkarev Z, Chesnokov Y, Zaigraev M, Chugunov A, Kulbatskii D, Kocharovskaya M Commun Biol. 2022; 5(1):1344.

PMID: 36477694 PMC: 9729238. DOI: 10.1038/s42003-022-04308-6.


Three-Finger Toxins from Brazilian Coral Snakes: From Molecular Framework to Insights in Biological Function.

Kleiz-Ferreira J, Cirauqui N, Trajano E, da Silva Almeida M, Zingali R Toxins (Basel). 2021; 13(5).

PMID: 33946590 PMC: 8147190. DOI: 10.3390/toxins13050328.


Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B.

Flores A, Ramirez-Franco J, Desplantes R, Debreux K, Ferracci G, Wernert F Proc Natl Acad Sci U S A. 2019; 116(36):18098-18108.

PMID: 31431523 PMC: 6731659. DOI: 10.1073/pnas.1908051116.


References
1.
Korchuganov D, Nolde S, Reibarkh M, Orekhov V, Schulga A, Ermolyuk Y . NMR study of monomer-dimer equilibrium of barstar in solution. J Am Chem Soc. 2001; 123(9):2068-9. DOI: 10.1021/ja0025447. View

2.
Saez-Briones P, Krauss M, Dreger M, Herrmann A, Tsetlin V, Hucho F . How do acetylcholine receptor ligands reach their binding sites?. Eur J Biochem. 1999; 265(3):902-10. DOI: 10.1046/j.1432-1327.1999.00787.x. View

3.
de Planque M, Rijkers D, Fletcher J, Liskamp R, Separovic F . The alphaM1 segment of the nicotinic acetylcholine receptor exhibits conformational flexibility in a membrane environment. Biochim Biophys Acta. 2004; 1665(1-2):40-7. DOI: 10.1016/j.bbamem.2004.06.021. View

4.
Dutertre S, Lewis R . Toxin insights into nicotinic acetylcholine receptors. Biochem Pharmacol. 2006; 72(6):661-70. DOI: 10.1016/j.bcp.2006.03.027. View

5.
Samson A, Levitt M . Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics. Biochemistry. 2008; 47(13):4065-70. PMC: 2750825. DOI: 10.1021/bi702272j. View