» Articles » PMID: 19783828

TrimerDimer: an Oligonucleotide-based Saturation Mutagenesis Approach That Removes Redundant and Stop Codons

Overview
Specialty Biochemistry
Date 2009 Sep 29
PMID 19783828
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

9-fluorenylmethoxycarbonyl (Fmoc) and 4,4'-dimethoxytrityl (DMTr) are orthogonal hydroxyl protecting groups that have been used in conjunction to assemble oligonucleotide libraries whose variants contain wild-type and mutant codons randomly interspersed throughout a focused DNA region. Fmoc is labile to organic bases and stable to weak acids, whereas DMTr behaves oppositely. Based on these chemical characteristics, we have now devised TrimerDimer, a novel codon-based saturation mutagenesis approach that removes redundant and stop codons during the assembly of degenerate oligonucleotides. In this approach, five DMTr-protected trinucleotide phosphoramidites (dTGG, dATG, dTTT, dTAT and dTGC) and five Fmoc-protected dinucleotide phosphoramidites (dAA, dTT, dAT, dGC and dCG) react simultaneously with a starting oligonucleotide growing on a solid support. The Fmoc group is then removed and the incorporated dimers react with a mixture of three DMTr-protected monomer phosphoramidites (dC, dA and dG) to produce 15 trinucleotides: dCAA, dAAA, dGAA, dCTT, dATT, dGTT, dCAT, dAAT, dGAT, dCGC, dAGC, dGGC, dCCG, dACG and dGCG. After one mutagenic cycle, 20 codons are generated encoding the 20 natural amino acids. TrimerDimer was tested by randomizing the four contiguous codons that encode amino acids L64-G67 of an engineered, nonfluorescent GFP protein. Sequencing of 89 nonfluorescent mutant clones and isolation of two fluorescent mutants confirmed the principle.

Citing Articles

A primer to directed evolution: current methodologies and future directions.

Selles Vidal L, Isalan M, Heap J, Ledesma-Amaro R RSC Chem Biol. 2023; 4(4):271-291.

PMID: 37034405 PMC: 10074555. DOI: 10.1039/d2cb00231k.


Split & mix assembly of DNA libraries for ultrahigh throughput on-bead screening of functional proteins.

Lindenburg L, Huovinen T, van de Wiel K, Herger M, Snaith M, Hollfelder F Nucleic Acids Res. 2020; 48(11):e63.

PMID: 32383757 PMC: 7293038. DOI: 10.1093/nar/gkaa270.


Evolving a Peptide: Library Platforms and Diversification Strategies.

Bozovicar K, Bratkovic T Int J Mol Sci. 2020; 21(1).

PMID: 31892275 PMC: 6981544. DOI: 10.3390/ijms21010215.


Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly.

Carcamo E, Roldan-Salgado A, Osuna J, Bello-Sanmartin I, Yanez J, Saab-Rincon G ACS Omega. 2018; 2(7):3183-3191.

PMID: 30023688 PMC: 6044943. DOI: 10.1021/acsomega.7b00508.


Modern methods for laboratory diversification of biomolecules.

Bratulic S, Badran A Curr Opin Chem Biol. 2017; 41:50-60.

PMID: 29096324 PMC: 6062405. DOI: 10.1016/j.cbpa.2017.10.010.


References
1.
Virnekas B, Ge L, Pluckthun A, Schneider K, Wellnhofer G, Moroney S . Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 1994; 22(25):5600-7. PMC: 310122. DOI: 10.1093/nar/22.25.5600. View

2.
Wachter R, Elsliger M, Kallio K, Hanson G, Remington S . Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure. 1998; 6(10):1267-77. DOI: 10.1016/s0969-2126(98)00127-0. View

3.
Neuner P, Cortese R, Monaci P . Codon-based mutagenesis using dimer-phosphoramidites. Nucleic Acids Res. 1998; 26(5):1223-7. PMC: 147399. DOI: 10.1093/nar/26.5.1223. View

4.
Yanez J, Arguello M, Osuna J, Soberon X, Gaytan P . Combinatorial codon-based amino acid substitutions. Nucleic Acids Res. 2004; 32(20):e158. PMC: 534637. DOI: 10.1093/nar/gnh156. View

5.
Miyazaki K, Arnold F . Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol. 1999; 49(6):716-20. DOI: 10.1007/pl00006593. View