» Articles » PMID: 19775243

Targeted Gene Inactivation in Clostridium Phytofermentans Shows That Cellulose Degradation Requires the Family 9 Hydrolase Cphy3367

Overview
Journal Mol Microbiol
Date 2009 Sep 25
PMID 19775243
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Summary Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367.

Citing Articles

Expression and characterization of a novel microbial GH9 glucanase, IDSGLUC9-4, isolated from sheep rumen.

Zhu Y, Bai S, Li N, Wang J, Wang J, Wang Q Anim Biosci. 2024; 37(9):1581-1594.

PMID: 38810985 PMC: 11366526. DOI: 10.5713/ab.24.0138.


are emerging industrial biocatalysts and biotherapeutics.

Zaplana T, Miele S, Tolonen A Front Bioeng Biotechnol. 2024; 11:1324396.

PMID: 38239921 PMC: 10794557. DOI: 10.3389/fbioe.2023.1324396.


Development of an efficient ClosTron system for gene disruption in Ruminiclostridium papyrosolvens.

Wang D, You M, Qiu Z, Li P, Qiao M, Xu C Appl Microbiol Biotechnol. 2023; 107(5-6):1801-1812.

PMID: 36808278 DOI: 10.1007/s00253-023-12427-1.


Transcriptome Comparison between Two Strains of during the Mating.

Wang S, Gao L, Yin Y, Zhang Y, Tang J, Cui H J Fungi (Basel). 2023; 9(1).

PMID: 36675853 PMC: 9862937. DOI: 10.3390/jof9010032.


Tuning of Gene Expression in Using Synthetic Promoters and CRISPRi.

Rostain W, Zaplana T, Boutard M, Baum C, Tabuteau S, Sanitha M ACS Synth Biol. 2022; 11(12):4077-4088.

PMID: 36427328 PMC: 9765743. DOI: 10.1021/acssynbio.2c00385.


References
1.
Johnson E, Madia A, DEMAIN A . Chemically Defined Minimal Medium for Growth of the Anaerobic Cellulolytic Thermophile Clostridium thermocellum. Appl Environ Microbiol. 1981; 41(4):1060-2. PMC: 243859. DOI: 10.1128/aem.41.4.1060-1062.1981. View

2.
Perret S, Maamar H, Belaich J, Tardif C . Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol Microbiol. 2004; 51(2):599-607. DOI: 10.1046/j.1365-2958.2003.03860.x. View

3.
Din N, Damude H, Gilkes N, Miller Jr R, Warren R, Kilburn D . C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci U S A. 1994; 91(24):11383-7. PMC: 45235. DOI: 10.1073/pnas.91.24.11383. View

4.
Heap J, Pennington O, Cartman S, Carter G, Minton N . The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods. 2007; 70(3):452-64. DOI: 10.1016/j.mimet.2007.05.021. View

5.
Lynd L, Laser M, Bransby D, Dale B, Davison B, Hamilton R . How biotech can transform biofuels. Nat Biotechnol. 2008; 26(2):169-72. DOI: 10.1038/nbt0208-169. View