» Articles » PMID: 19751409

The Role of Sirtuins in the Control of Metabolic Homeostasis

Overview
Specialty Science
Date 2009 Sep 16
PMID 19751409
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

Recently the function of the sirtuin family, named after their homology to the Saccharomyces cerevisiae gene silent information regulator 2 (Sir2), has received a lot of attention, as their beneficial impact on longevity was linked to their effects on metabolic control. All sirtuins require nicotinamide adenine dinucleotide (NAD(+)) for their deacetylase or ADP-ribosyl transferase activity, linking their function tightly to cellular energy levels. SIRT1, the founding member of the sirtuin family, modulates many aspects of glucose and lipid homeostasis in almost all key metabolic tissues. Other members including SIRT2, SIRT3, and SIRT4 are also implicated in various metabolic processes. Here, we review the recent data related to the role of sirtuins in the control of metabolic homeostasis and possible underlying molecular mechanisms.

Citing Articles

Organelle Communication with the Nucleus.

Sengupta S, Levy D Results Probl Cell Differ. 2024; 73:3-23.

PMID: 39242372 PMC: 11409190. DOI: 10.1007/978-3-031-62036-2_1.


Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis.

Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B Biomolecules. 2024; 14(8).

PMID: 39199358 PMC: 11352324. DOI: 10.3390/biom14080970.


The dual role of sirtuins in cancer: biological functions and implications.

Yu L, Li Y, Song S, Zhang Y, Wang Y, Wang H Front Oncol. 2024; 14:1384928.

PMID: 38947884 PMC: 11211395. DOI: 10.3389/fonc.2024.1384928.


polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism.

Zhou R, Liu Y, Hu W, Yang J, Lin B, Zhang Z Acta Biochim Biophys Sin (Shanghai). 2024; 56(6):844-856.

PMID: 38606478 PMC: 11214951. DOI: 10.3724/abbs.2024046.


Whole-genome resequencing provides insights into the diversity and adaptation to desert environment in Xinjiang Mongolian cattle.

Xu L, Zhou K, Huang X, Chen H, Dong H, Chen Q BMC Genomics. 2024; 25(1):176.

PMID: 38355434 PMC: 10865613. DOI: 10.1186/s12864-024-10084-w.


References
1.
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X . SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007; 6(4):307-19. DOI: 10.1016/j.cmet.2007.08.014. View

2.
Rodgers J, Lerin C, Gerhart-Hines Z, Puigserver P . Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2007; 582(1):46-53. PMC: 2275806. DOI: 10.1016/j.febslet.2007.11.034. View

3.
Farris W, Mansourian S, Chang Y, Lindsley L, Eckman E, Frosch M . Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003; 100(7):4162-7. PMC: 153065. DOI: 10.1073/pnas.0230450100. View

4.
McBurney M, Yang X, Jardine K, Hixon M, Boekelheide K, Webb J . The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2002; 23(1):38-54. PMC: 140671. DOI: 10.1128/MCB.23.1.38-54.2003. View

5.
Schwer B, North B, Frye R, Ott M, Verdin E . The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002; 158(4):647-57. PMC: 2174009. DOI: 10.1083/jcb.200205057. View