» Articles » PMID: 19706543

Targeting a Bacterial Stress Response to Enhance Antibiotic Action

Overview
Specialty Science
Date 2009 Aug 27
PMID 19706543
Citations 75
Authors
Affiliations
Soon will be listed here.
Abstract

This report describes the identification and analysis of a 2-component regulator of Pseudomonas aeruginosa that is a potential aminoglycoside antibiotic combination therapy target. The regulator, AmgRS, was identified in a screen of a comprehensive, defined transposon mutant library for functions whose inactivation increased tobramycin sensitivity. AmgRS mutations enhanced aminoglycoside action against bacteria grown planktonically and in antibiotic tolerant biofilms, against genetically resistant clinical isolates, and in lethal infections of mice. Drugs targeting AmgRS would thus be expected to enhance the clinical efficacy of aminoglycosides. Unexpectedly, the loss of AmgRS reduced virulence in the absence of antibiotics, indicating that its inactivation could protect against infection directly as well as by enhancing aminoglycoside action. Transcription profiling and phenotypic analysis suggested that AmgRS controls an adaptive response to membrane stress, which can be caused by aminoglycoside-induced translational misreading. These results help validate AmgRS as a potential antibiotic combination target for P. aeruginosa and indicate that fundamental stress responses may be a valuable general source of such targets.

Citing Articles

Role of the two-component system AmgRS in early resistance of to cinnamaldehyde.

Dubois E, Spasovski V, Plesiat P, Llanes C Microbiol Spectr. 2024; 13(1):e0169924.

PMID: 39656006 PMC: 11705830. DOI: 10.1128/spectrum.01699-24.


Impact of the Stress Response on Quaternary Ammonium Compound Disinfectant Susceptibility in Species.

McCarlie S, Bragg R Microorganisms. 2024; 12(11).

PMID: 39597629 PMC: 11596051. DOI: 10.3390/microorganisms12112240.


Discovery of new AMR drugs targeting modulators of antimicrobial activity using in vivo silkworm screening systems.

Tabuchi F, Mikami K, Miyauchi M, Sekimizu K, Miyashita A J Antibiot (Tokyo). 2024; 78(2):69-77.

PMID: 39543333 PMC: 11769840. DOI: 10.1038/s41429-024-00788-2.


Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm.

Rapsinski G, Michaels L, Hill M, Yarrington K, Haas A, DAmico E PLoS Pathog. 2024; 20(5):e1011453.

PMID: 38820569 PMC: 11168685. DOI: 10.1371/journal.ppat.1011453.


Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules.

Lang M, Carvalho A, Baharoglu Z, Mazel D Microbiol Mol Biol Rev. 2023; 87(4):e0003622.

PMID: 38047635 PMC: 10732077. DOI: 10.1128/mmbr.00036-22.


References
1.
Flamm R, Weaver M, Thornsberry C, Jones M, Karlowsky J, Sahm D . Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother. 2004; 48(7):2431-6. PMC: 434174. DOI: 10.1128/AAC.48.7.2431-2436.2004. View

2.
Smith E, Buckley D, Wu Z, Saenphimmachak C, Hoffman L, DArgenio D . Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006; 103(22):8487-92. PMC: 1482519. DOI: 10.1073/pnas.0602138103. View

3.
Davies J, Spiegelman G, Yim G . The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol. 2006; 9(5):445-53. DOI: 10.1016/j.mib.2006.08.006. View

4.
Price N, Raivio T . Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol. 2008; 191(6):1798-815. PMC: 2648356. DOI: 10.1128/JB.00798-08. View

5.
Jacobs M, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S . Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003; 100(24):14339-44. PMC: 283593. DOI: 10.1073/pnas.2036282100. View